Publications

Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Teixeira, L. R., C. M. Cordas, M. P. Fonseca, N. E. C. Duke, P. R. Pokkuluri, and C. A. Salgueiro. "Modulation of the Redox Potential and Electron/Proton Transfer Mechanisms in the Outer Membrane Cytochrome OmcF From Geobacter sulfurreducens." Frontiers in Microbiology. 10 (2020). AbstractWebsite
n/a
2019
Samhan-Arias, A. K., C. M. Cordas, M. S. Carepo, L. B. Maia, C. Gutierrez-Merino, I. Moura, and JJG Moura. "Ligand accessibility to heme cytochrome b 5 coordinating sphere and enzymatic activity enhancement upon tyrosine ionization." Journal of Biological Inorganic Chemistry. 24.3 (2019): 317-330. AbstractWebsite
n/a
2018
Samhan-Arias, A. K., S. Fortalezas, C. M. Cordas, I. Moura, JJG Moura, and C. Gutierrez-Merino. "Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c." Redox Biology. 15 (2018): 109-114. AbstractWebsite
n/a
Rosa, V., A. P. S. Gaspari, F. Folgosa, C. M. Cordas, P. Tavares, T. Santos-Silva, S. Barroso, and T. Avilés. "Imine ligands based on ferrocene: Synthesis, structural and Mössbauer characterization and evaluation as chromogenic and electrochemical sensors for Hg2+." New Journal of Chemistry. 42.5 (2018): 3334-3343. AbstractWebsite
n/a
Samhan-Arias, A. K., L. B. Maia, C. M. Cordas, I. Moura, C. Gutierrez-Merino, and JJG Moura. "Peroxidase-like activity of cytochrome b5 is triggered upon hemichrome formation in alkaline pH." Biochimica et Biophysica Acta - Proteins and Proteomics. 1866.2 (2018): 373-378. AbstractWebsite
n/a
Teixeira, L. R., J. M. Dantas, C. A. Salgueiro, and C. M. Cordas. "Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens." Biochimica et Biophysica Acta - Bioenergetics. 1859.10 (2018): 1132-1137. AbstractWebsite
n/a
Samhan-Arias, A. K., R. M. Almeida, S. Ramos, C. M. Cordas, I. Moura, C. Gutierrez-Merino, and JJG Moura. "Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation." Biochimica et Biophysica Acta - Bioenergetics. 1859.2 (2018): 78-87. AbstractWebsite
n/a
2015
Santos, T. C., A. R. De Oliveira, J. M. Dantas, C. A. Salgueiro, and C. M. Cordas. "Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens." Biochimica et Biophysica Acta - Bioenergetics. 1847.10 (2015): 1113-1118. AbstractWebsite
n/a
2013
Calado, L. M., C. M. Cordas, and J. P. Sousa. "Acemetacin and indomethacin detection using modified carbon microelectrodes." Analytical and Bioanalytical Electrochemistry. 5.6 (2013): 665-671. AbstractWebsite
n/a
2011
Folgosa, F., C. M. Cordas, J. A. Santos, AS Pereira, JJG Moura, P. Tavares, and I. Moura. "New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway." Biochemical Journal. 438 (2011): 485-494. AbstractWebsite

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two ironcentre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10(7) M(-1) . s(-1) and 1.3 x 10(6) M(-1) . s(-1) for SOR(Fe(IIII)-Fe(II)) and for SOR(Fe(IIII)-Fe(III)) forms respectively, and 3.2 x 10(6) M(-1) s(-1) for the SOR(Zn(II)-Fe(III)) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

2004
Auchere, F., R. Sikkink, C. Cordas, P. Raleiras, P. Tavares, I. Moura, and JJG Moura. "Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin." Journal of Biological Inorganic Chemistry. 9.7 (2004): 839-849. Abstract
n/a