Publications

Export 63 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Ribeiro, Diana O., Benedita A. Pinheiro, Ana Luisa Carvalho, and Angelina S. Palma. "Targeting protein-carbohydrate interactions in plant cell-wall biodegradation: the power of carbohydrate microarrays." Carbohydrate Chemistry: Chemical and Biological Approaches Volume 43. Vol. 43. The Royal Society of Chemistry, 2018. 159-176. Abstract

The plant cell-wall is constituted by structurally diverse polysaccharides. The biodegradation of these is a crucial process for life sustainability. Cellulolytic microorganisms are highly efficient in this process by assembling modular architectures of carbohydrate-active enzymes with appended non-catalytic carbohydrate-binding modules (CBMs). Carbohydrate microarrays offer high-throughput and sensitive tools for uncovering carbohydrate-binding specificities of CBMs{,} which is pivotal to understand the function of these modules in polysaccharide biodegradation mechanisms. Features of this technology will be here briefly reviewed with highlights of microarray approaches to study plant-carbohydrates and CBM-carbohydrate interactions{,} along with an overview of plant polysaccharides and microorganisms strategies for their recognition.

2017
Kryshtafovych, Andriy, Reinhard Albrecht, Arnaud Baslé, Pedro Bule, Alessandro T. Caputo, Ana Luisa Carvalho, Kinlin L. Chao, Ron Diskin, Krzysztof Fidelis, Carlos M. G. A. Fontes, Folmer Fredslund, Harry J. Gilbert, Celia W. Goulding, Marcus D. Hartmann, Christopher S. Hayes, Osnat Herzberg, Johan C. Hill, Andrzej Joachimiak, Gert-Wieland Kohring, Roman I. Koning, Leila {Lo Leggio}, Marco Mangiagalli, Karolina Michalska, John Moult, Shabir Najmudin, Marco Nardini, Valentina Nardone, Didier Ndeh, Thanh H. Nguyen, Guido Pintacuda, Sandra Postel, Mark J. van Raaij, Pietro Roversi, Amir Shimon, Abhimanyu K. Singh, Eric J. Sundberg, Kaspars Tars, Nicole Zitzmann, and Torsten Schwede. "Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016)." Proteins: Structure, Function, and Bioinformatics (2017). AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Hussain, Abid, Ana T. S. Semeano, Susana I. C. J. Palma, Ana S. Pina, José Almeida, Bárbara F. Medrado, Ana C. C. S. Pádua, Ana L. Carvalho, Madalena Dionísio, Rosamaria W. C. Li, Hugo Gamboa, Rein V. Ulijn, Jonas Gruber, and Ana C. A. Roque. "Tunable gas sensing gels by cooperative assembly." Advanced Functional Materials. just accep (2017): xx. AbstractWebsite

n/a

Pires, Virgínia M. R., Pedro M. M. Pereira, Joana L. A. Brás, Márcia Correia, Vânia Cardoso, Pedro Bule, Victor D. Alves, Shabir Najmudin, Immacolata Venditto, Luís M. A. Ferreira, Maria João Romão, Ana Luísa Carvalho, Carlos M. G. A. Fontes, and Duarte Miguel Prazeres. "Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C." Journal of Biological Chemistry. 292 (2017): 4847-4860. AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Kowacz, Magdalena, Mateusz Marchel, Lina Juknaité, José M. S. S. Esperança, Maria João Romão, Ana Luísa Carvalho, and Luís Paulo N. Rebelo. "Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly." Journal of Crystal Growth. 457 (2017): 362-368. AbstractWebsite

We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

Bule, Pedro, Victor D. Alves, Vered Israeli-Ruimy, Ana L. Carvalho, Luís M. A. Ferreira, Steven P. Smith, Harry J. Gilbert, Shabir Najmudin, Edward A. Bayer, and Carlos M. G. A. Fontes. "Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes." Scientific Reports. 7.1 (2017): 759. AbstractWebsite

Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.

Polino, Mariella, Ana Luı́sa Carvalho, Lina Juknaitė, Carla A. M. Portugal, Isabel M. Coelhoso, Maria João Romão, and João G. Crespo. "Ion-Exchange Membranes for Stable Derivatization of Protein Crystals." Crystal Growth & DesignCrystal Growth & Design (2017). AbstractWebsite
n/a
dos Santos, Raquel, Ana Luísa Carvalho, and Cecília A. A. Roque. "Renaissance of protein crystallization and precipitation in biopharmaceuticals purification." Biotechnology Advances (2017): -. AbstractWebsite

Abstract The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

2016
Brás, Joana L. A., Benedita A. Pinheiro, Kate Cameron, Fiona Cuskin, Aldino Viegas, Shabir Najmudin, Pedro Bule, Virginia M. R. Pires, Maria João Romão, Edward A. Bayer, Holly L. Spencer, Steven Smith, Harry J. Gilbert, Victor D. Alves, Ana Luísa Carvalho, and Carlos M. G. A. Fontes. "Diverse specificity of cellulosome attachment to the bacterial cell surface." Scientific Reports. 6 (2016): 38292. AbstractWebsite

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

2015
Kowacz, M., M. Marchel, L. Juknaite, Jmss Esperanca, MJ Romao, AL Carvalho, and L. P. N. Rebelo. "Ionic-Liquid-Functionalized Mineral Particles for Protein Crystallization." Crystal Growth & Design. 15 (2015): 2994-3003. AbstractWebsite

Nucleation is a critical step determining the outcome of the entire crystallization process. Finding an effective nucleant for protein crystallization is of utmost importance for structural biology. The latter relies on good-quality crystals to solve the three-dimensional structures of macromolecules. In this study we show that crystalline barium sulfate (BaSO4) with an etched and/or ionic liquid (IL)-functionalized surface (1) can induce protein nucleation at concentrations well below the concentration needed to promote crystal growth under control conditions, (2) can shorten the nucleation time, (3) can increase the growth rate, and finally (4) may help to improve the protein crystal morphology. These effects were shown for lysozyme, RNase A, trypsin, proteinase K, myoglobin, and hemoglobin. Therefore, the use of BaSO4 particles enables us to reduce the amount of protein in crystallization trials and increases the chance of obtaining protein crystals of the desired quality. In the context of the underlying mechanism, it is shown that the protein-solid contact formation is governed by the interaction of the polar compartments of the biomacromolecule with the support. The tendency of a protein to concentrate near the solid surface is enhanced by both the hydrophobicity of the protein and that of the surface (tuned by the functionalizing IL). These mechanisms of interaction of biomacromolecules with inorganic hydrophilic solids correspond to the principles of amphiphilic IL-mineral interactions.

Palma, A. S., Y. Liu, H. Zhang, Y. Zhang, B. V. McCleary, G. Yu, Q. Huang, L. S. Guidolin, A. E. Ciocchini, A. Torosantucci, D. Wang, AL Carvalho, C. M. Fontes, B. Mulloy, R. A. Childs, T. Feizi, and W. Chai. "Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry." Mol Cell Proteomics (2015). AbstractWebsite

Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes including immunomodulation, anti-cancer activities, pathogen virulence and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a glucome microarray, the first sequence-defined glycome-scale microarray, using a designer approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. The negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear homo and hetero and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signalling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.

2014
Ribeiro, Diana, Alina Kulakova, Pedro Quaresma, Eulalia Pereira, Cecilia Bonifacio, Maria Joao Romao, Ricardo Franco, and Ana Luisa Carvalho. "Use of Gold Nanoparticles as Additives in Protein Crystallization." Crystal Growth & Design. 14 (2014): 222-227. AbstractWebsite
n/a
2013
Viegas, Aldino, Joao Sardinha, Filipe Freire, Daniel F. Duarte, Ana L. Carvalho, Carlos M. G. A. Fontes, Maria J. Romao, Anjos L. Macedo, and Eurico J. Cabrita. "Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11)." The Biochemical journal. 451 (2013): 289-300.Website
2012
Bras, Joana L. A., Ana Luisa Carvalho, Aldino Viegas, Shabir Najmudin, Victor D. Alves, Jose A. M. Prates, Luis M. A. Ferreira, Maria J. Romao, Harry J. Gilbert, and Carlos M. G. A. Fontes. "Escherichia coli expression, purification, crystallization, and structure determination of bacterial cohesin-dockerin complexes." Methods in enzymology. Vol. 510. 2012. 395-415. Abstract

Cellulosomes are highly efficient nanomachines that play a fundamental role during the anaerobic deconstruction of complex plant cell wall carbohydrates. The assembly of these complex nanomachines results from the very tight binding of repetitive cohesin modules, located in a noncatalytic molecular scaffold, and dockerin domains located at the C-terminus of the enzyme components of the cellulosome. The number of enzymes found in a cellulosome varies but may reach more than 100 catalytic subunits if cellulosomes are further organized in polycellulosomes, through a second type of cohesin-dockerin interaction. Structural studies have revealed how the cohesin-dockerin interaction mediates cellulosome assembly and cell-surface attachment, while retaining the flexibility required to potentiate catalytic synergy within the complex. Methods that might be applied for the production, purification, and structure determination of cohesin-dockerin complexes are described here. Copyright 2012 Elsevier Inc. All rights reserved.

Pinheiro, B. A., J. L. A. Bras, S. Najmudin, AL Carvalho, LMA Ferreira, JAM Prates, and CMGA Fontes. "Flexibility and specificity of the cohesin-dockerin interaction: implications for cellulosome assembly and functionality." Biocatalysis and Biotransformation. 30 (2012): 309-315. AbstractWebsite

Cellulosomes are highly elaborate multi-enzyme complexes of Carbohydrate Active enZYmes (CAZYmes) secreted by cellulolytic microorganisms, which very effectively degrade the most abundant polymers on Earth, cellulose and hemicelluloses. Cellulosome assembly requires that a non-catalytic dockerin module found in cellulosomal enzymes binds to one of the various cohesin domains located in a large molecular scaffold called Scaffoldin. A diversity of cohesin -dockerin binding specificities have been described, the combination of which may result in complex plant cell wall degrading systems, maximising the synergy between enzymes in order to improve catalytic efficiency. Structural studies have allowed the spatial flexibility inherent to the cellulosomal system to be determined. Recent progress achieved from the study of the fundamental cohesin and dockerin units involved in cellulosome assembly will be reviewed.

Kowacz, Magdalena, Abhik Mukhopadhyay, Ana Luisa Carvalho, Jose M. S. S. Esperanca, Maria J. Romao, and Luis Paulo N. Rebelo. "Hofmeister effects of ionic liquids in protein crystallization: Direct and water-mediated interactions." Crystengcomm. 14 (2012): 4912-4921. AbstractWebsite
n/a
Bras, Joana L. A., Victor D. Alves, Ana Luisa Carvalho, Shabir Najmudin, Jose A. M. Prates, Luis M. A. Ferreira, David N. Bolam, Maria Joao Romao, Harry J. Gilbert, and Carlos M. G. A. Fontes. "Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode." The Journal of biological chemistry. 287 (2012): 44394-405.Website
2011
Garcia-Alvarez, Begona, Roberto Melero, Fernando M. V. Dias, Jose A. M. Prates, Carlos M. G. A. Fontes, Steven P. Smith, Maria Joao Romao, Ana Luisa Carvalho, and Oscar Llorca. "Molecular Architecture and Structural Transitions of a Clostridium thermocellum Mini-Cellulosome." Journal of Molecular Biology. 407 (2011): 571-580. Abstract
n/a
Bras, Joana L. A., Alan Cartmell, Ana Lusia M. Carvalho, Genny Verze, Edward A. Bayer, Yael Vazana, Marcia A. S. Correia, Jose A. M. Prates, Supriya Ratnaparkhe, Alisdair B. Boraston, Maria J. Romao, Carlos M. G. A. Fontes, and Harry J. Gilbert. "Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis (vol 108, pg 5237, 2011)." Proceedings of the National Academy of Sciences of the United States of America. 108 (2011): 8525. Abstract
n/a
2010
Carvalho, Ana Luísa, José Trincão, and Maria João Romão. "X-Ray Crystallography in Drug Discovery." Methods in molecular biology (Clifton, N.J.). Vol. 572. 2010. 31-56. Abstract

Macromolecular X-ray crystallography is an important and powerful technique in drug discovery, used by pharmaceutical companies in the discovery process of new medicines. The detailed analysis of crystal structures of protein-ligand complexes allows the study of the specific interactions of a particular drug with its protein target at the atomic level. It is used to design and improve drugs. The starting point of these studies is the preparation of suitable crystals of complexes with potential ligands, which can be achieved by using different strategies described in this chapter. In addition, an introduction to X-ray crystallography is given, highlighting the fundamental steps necessary to determine the three-dimensional structure of protein-ligand complexes, as well as some of the tools and criteria to validate crystal structures available in databases.

2009
Godinho, M. H., D. Filip, I. Costa, A. - L. Carvalho, J. L. Figueirinhas, and E. M. Terentjev. "Liquid crystalline cellulose derivative elastomer films under uniaxial strain." Cellulose. 16 (2009): 199-205. Abstract
n/a
Freire, Filipe, Maria Joao Romao, Anjos L. Macedo, Susana S. Aveiro, Brian J. Goodfellow, and Ana Luisa Carvalho. "Preliminary structural characterization of human SOUL, a haem-binding protein." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65 (2009): 723-726. Abstract
n/a
Viciosa, M. T., N. T. Correia, M. Salmeron Sanchez, AL Carvalho, MJ Romao, J. L. Gomez Ribelles, and M. Dionisio. "Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former." Journal of Physical Chemistry B. 113 (2009): 14209-14217. Abstract
n/a
2008
Viegas, Aldino, Natercia F. Bras, Nuno M. F. S. A. Cerqueira, Pedro Alexandrino Fernandes, Jose A. M. Prates, Carlos M. G. A. Fontes, Marta Bruix, Maria Joao Romao, Ana Luisa Carvalho, Maria Joao Ramos, Anjos L. Macedo, and Eurico J. Cabrita. "Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach." Febs Journal. 275 (2008): 2524-2535. Abstract
n/a
2007
Carvalho, Ana Luisa, Fernando M. V. Dias, Tibor Nagy, Jose A. M. Prates, Mark R. Proctor, Nicola Smith, Edward A. Bayer, Gideon J. Davies, Luis M. A. Ferreira, Maria J. Romao, Carlos M. G. A. Fontes, and Harry J. Gilbert. "Evidence for a dual binding mode of dockerin modules to cohesins." Proceedings of the National Academy of Sciences of the United States of America. 104 (2007): 3089-3094. Abstract
n/a