Publications

Export 53 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
dos Santos, Raquel, Ana Luísa Carvalho, and Cecília A. A. Roque. "Renaissance of protein crystallization and precipitation in biopharmaceuticals purification." Biotechnology Advances (2017): -. AbstractWebsite

Abstract The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

2016
Brás, Joana L. A., Benedita A. Pinheiro, Kate Cameron, Fiona Cuskin, Aldino Viegas, Shabir Najmudin, Pedro Bule, Virginia M. R. Pires, Maria João Romão, Edward A. Bayer, Holly L. Spencer, Steven Smith, Harry J. Gilbert, Victor D. Alves, Ana Luísa Carvalho, and Carlos M. G. A. Fontes. "Diverse specificity of cellulosome attachment to the bacterial cell surface." Scientific Reports. 6 (2016): 38292. AbstractWebsite

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

2015
Kowacz, M., M. Marchel, L. Juknaite, Jmss Esperanca, MJ Romao, AL Carvalho, and L. P. N. Rebelo. "Ionic-Liquid-Functionalized Mineral Particles for Protein Crystallization." Crystal Growth & Design. 15 (2015): 2994-3003. AbstractWebsite

Nucleation is a critical step determining the outcome of the entire crystallization process. Finding an effective nucleant for protein crystallization is of utmost importance for structural biology. The latter relies on good-quality crystals to solve the three-dimensional structures of macromolecules. In this study we show that crystalline barium sulfate (BaSO4) with an etched and/or ionic liquid (IL)-functionalized surface (1) can induce protein nucleation at concentrations well below the concentration needed to promote crystal growth under control conditions, (2) can shorten the nucleation time, (3) can increase the growth rate, and finally (4) may help to improve the protein crystal morphology. These effects were shown for lysozyme, RNase A, trypsin, proteinase K, myoglobin, and hemoglobin. Therefore, the use of BaSO4 particles enables us to reduce the amount of protein in crystallization trials and increases the chance of obtaining protein crystals of the desired quality. In the context of the underlying mechanism, it is shown that the protein-solid contact formation is governed by the interaction of the polar compartments of the biomacromolecule with the support. The tendency of a protein to concentrate near the solid surface is enhanced by both the hydrophobicity of the protein and that of the surface (tuned by the functionalizing IL). These mechanisms of interaction of biomacromolecules with inorganic hydrophilic solids correspond to the principles of amphiphilic IL-mineral interactions.

2014
Ribeiro, Diana, Alina Kulakova, Pedro Quaresma, Eulalia Pereira, Cecilia Bonifacio, Maria Joao Romao, Ricardo Franco, and Ana Luisa Carvalho. "Use of Gold Nanoparticles as Additives in Protein Crystallization." Crystal Growth & Design. 14 (2014): 222-227. AbstractWebsite
n/a
2013
Viegas, Aldino, Joao Sardinha, Filipe Freire, Daniel F. Duarte, Ana L. Carvalho, Carlos M. G. A. Fontes, Maria J. Romao, Anjos L. Macedo, and Eurico J. Cabrita. "Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11)." The Biochemical journal. 451 (2013): 289-300.Website
2012
Bras, Joana L. A., Ana Luisa Carvalho, Aldino Viegas, Shabir Najmudin, Victor D. Alves, Jose A. M. Prates, Luis M. A. Ferreira, Maria J. Romao, Harry J. Gilbert, and Carlos M. G. A. Fontes. "Escherichia coli expression, purification, crystallization, and structure determination of bacterial cohesin-dockerin complexes." Methods in enzymology. Vol. 510. 2012. 395-415. Abstract

Cellulosomes are highly efficient nanomachines that play a fundamental role during the anaerobic deconstruction of complex plant cell wall carbohydrates. The assembly of these complex nanomachines results from the very tight binding of repetitive cohesin modules, located in a noncatalytic molecular scaffold, and dockerin domains located at the C-terminus of the enzyme components of the cellulosome. The number of enzymes found in a cellulosome varies but may reach more than 100 catalytic subunits if cellulosomes are further organized in polycellulosomes, through a second type of cohesin-dockerin interaction. Structural studies have revealed how the cohesin-dockerin interaction mediates cellulosome assembly and cell-surface attachment, while retaining the flexibility required to potentiate catalytic synergy within the complex. Methods that might be applied for the production, purification, and structure determination of cohesin-dockerin complexes are described here. Copyright 2012 Elsevier Inc. All rights reserved.

Kowacz, Magdalena, Abhik Mukhopadhyay, Ana Luisa Carvalho, Jose M. S. S. Esperanca, Maria J. Romao, and Luis Paulo N. Rebelo. "Hofmeister effects of ionic liquids in protein crystallization: Direct and water-mediated interactions." Crystengcomm. 14 (2012): 4912-4921. AbstractWebsite
n/a
Bras, Joana L. A., Victor D. Alves, Ana Luisa Carvalho, Shabir Najmudin, Jose A. M. Prates, Luis M. A. Ferreira, David N. Bolam, Maria Joao Romao, Harry J. Gilbert, and Carlos M. G. A. Fontes. "Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode." The Journal of biological chemistry. 287 (2012): 44394-405.Website
2011
Garcia-Alvarez, Begona, Roberto Melero, Fernando M. V. Dias, Jose A. M. Prates, Carlos M. G. A. Fontes, Steven P. Smith, Maria Joao Romao, Ana Luisa Carvalho, and Oscar Llorca. "Molecular Architecture and Structural Transitions of a Clostridium thermocellum Mini-Cellulosome." Journal of Molecular Biology. 407 (2011): 571-580. Abstract
n/a
Bras, Joana L. A., Alan Cartmell, Ana Lusia M. Carvalho, Genny Verze, Edward A. Bayer, Yael Vazana, Marcia A. S. Correia, Jose A. M. Prates, Supriya Ratnaparkhe, Alisdair B. Boraston, Maria J. Romao, Carlos M. G. A. Fontes, and Harry J. Gilbert. "Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis (vol 108, pg 5237, 2011)." Proceedings of the National Academy of Sciences of the United States of America. 108 (2011): 8525. Abstract
n/a
2010
Carvalho, Ana Luísa, José Trincão, and Maria João Romão. "X-Ray Crystallography in Drug Discovery." Methods in molecular biology (Clifton, N.J.). Vol. 572. 2010. 31-56. Abstract

Macromolecular X-ray crystallography is an important and powerful technique in drug discovery, used by pharmaceutical companies in the discovery process of new medicines. The detailed analysis of crystal structures of protein-ligand complexes allows the study of the specific interactions of a particular drug with its protein target at the atomic level. It is used to design and improve drugs. The starting point of these studies is the preparation of suitable crystals of complexes with potential ligands, which can be achieved by using different strategies described in this chapter. In addition, an introduction to X-ray crystallography is given, highlighting the fundamental steps necessary to determine the three-dimensional structure of protein-ligand complexes, as well as some of the tools and criteria to validate crystal structures available in databases.

2009
Freire, Filipe, Maria Joao Romao, Anjos L. Macedo, Susana S. Aveiro, Brian J. Goodfellow, and Ana Luisa Carvalho. "Preliminary structural characterization of human SOUL, a haem-binding protein." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65 (2009): 723-726. Abstract
n/a
Viciosa, M. T., N. T. Correia, M. Salmeron Sanchez, AL Carvalho, MJ Romao, J. L. Gomez Ribelles, and M. Dionisio. "Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former." Journal of Physical Chemistry B. 113 (2009): 14209-14217. Abstract
n/a
2008
Viegas, Aldino, Natercia F. Bras, Nuno M. F. S. A. Cerqueira, Pedro Alexandrino Fernandes, Jose A. M. Prates, Carlos M. G. A. Fontes, Marta Bruix, Maria Joao Romao, Ana Luisa Carvalho, Maria Joao Ramos, Anjos L. Macedo, and Eurico J. Cabrita. "Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach." Febs Journal. 275 (2008): 2524-2535. Abstract
n/a
2007
Carvalho, Ana Luisa, Fernando M. V. Dias, Tibor Nagy, Jose A. M. Prates, Mark R. Proctor, Nicola Smith, Edward A. Bayer, Gideon J. Davies, Luis M. A. Ferreira, Maria J. Romao, Carlos M. G. A. Fontes, and Harry J. Gilbert. "Evidence for a dual binding mode of dockerin modules to cohesins." Proceedings of the National Academy of Sciences of the United States of America. 104 (2007): 3089-3094. Abstract
n/a
Coelho, Catarina, Pablo J. Gonzalez, Jose Trincao, Ana L. Carvalho, Shabir Najmudin, Thomas Hettman, Stephan Dieckman, Jose J. G. Moura, Isabel Moura, and Maria J. Romao. "Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 63 (2007): 516-519. Abstract
n/a
2006
Santos-Silva, T., J. Trincao, AL Carvalho, C. Bonifacio, F. Auchere, P. Raleiras, I. Moura, JJG Moura, and MJ Romao. "The first crystal structure of class III superoxide reductase from Treponema pallidum." Journal of Biological Inorganic Chemistry. 11 (2006): 548-558. Abstract
n/a
Najmudin, S., CIPD Guerreiro, AL Carvalho, JAM Prates, MAS Correia, V. D. Alves, LMA Ferreira, MJ Romao, HJ Gilbert, DN Bolam, and CMGA Fontes. "Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains." Journal of Biological Chemistry. 281 (2006): 8815-8828. Abstract
n/a
2005
Carvalho, AL, VMR Pires, TM Gloster, JP Turkenburg, JAM Prates, LMA Ferreira, MJ Romao, GJ Davies, CMGA Fontes, and HJ Gilbert. "Insights into the structural determinants of cohesin dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA." Journal of Molecular Biology. 349 (2005): 909-915. Abstract
n/a
Santos-Silva, T., J. Trincao, AL Carvalho, C. Bonifacio, F. Auchere, I. Moura, JJG Moura, and MJ Romao. "Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 61 (2005): 967-970. Abstract
n/a
2004
Carvalho, AL, A. Goyal, JAM Prates, DN Bolam, HJ Gilbert, VMR Pires, LMA Ferreira, A. Planas, MJ Romao, and CMGA Fontes. "The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site." Journal of Biological Chemistry. 279 (2004): 34785-34793. Abstract
n/a
2003
Carvalho, AL, FMV Dias, JAM Prates, T. Nagy, HJ Gilbert, GJ Davies, LMA Ferreira, MJ Romao, and CMGA Fontes. "Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex." Proceedings of the National Academy of Sciences of the United States of America. 100 (2003): 13809-13814. Abstract
n/a
2002
Carvalho, AL, L. Sanz, D. Barettino, A. Romero, JJ Calvete, and MJ Romao. "Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: A homologue of human PSA." Journal of Molecular Biology. 322 (2002): 325-337. Abstract
n/a
2001
Carvalho, AL, JM Dias, L. Sanz, A. Romero, JJ Calvete, and MJ Romao. "Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma." Acta Crystallographica Section D-Biological Crystallography. 57 (2001): 1180-1183. Abstract

The purification, crystallization and identification by X-ray diffraction analysis of a horse kallikrein is reported. The protein was purired from horse seminal plasma. Crystals belong to space group C2 and the structure was solved by the MIRAS method, with two heavy-atom derivatives of mercury and platinum. X-ray diffraction data to 1.42 Angstrom resolution were collected at the ESRF synchrotron-radiation source.

1999
Archer, M., AL Carvalho, S. Teixeira, I. Moura, JJG Moura, F. Rusnak, and MJ Romao. "Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein." Protein Science. 8 (1999): 1536-1545. Abstract
n/a