. 2012;2:5075-5079.
Molecularly imprinted polymeric particles with molecular recognition towards Bisphenol A (BPA) were synthesized for the first time using the semi-covalent imprinting approach in supercritical carbon dioxide (scCO2). The material{'}s affinity to BPA was achieved by co-polymerizing ethylene glycol dimethacrylate (EGDMA) with a template-containing monomer{,} Bisphenol A dimethacrylate (BPADM) in scCO2. Bisphenol A is then cleaved from the polymeric matrix by hydrolysis with tetrabutylammonium hydroxide (n-Bu4OH) also in a supercritical environment{,} taking advantage of the high diffusivity of scCO2. The selectivity of the molecular imprinted polymer (MIP) was assessed by evaluating its capability to bind BPA in comparison with progesterone and [small alpha]-ethinylestradiol. In addition{,} the cross-linked particles were used to prepare a PMMA-based hybrid imprinted membrane by a scCO2-assisted phase inversion method. Results show that the incorporation of MIP particles was able to confer molecular affinity to BPA to the membrane and that at dynamic conditions of filtration{,} this imprinted porous structure was able to adsorb a higher amount of BPA than the corresponding non-imprinted hybrid membrane. Our work represents a valuable greener alternative to conventional methods{,} for the synthesis of affinity materials which are able to maintain molecular recognition properties in water.