Publications

Export 27 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
A
Sousa, P., Accionamento de um Motor Passo a Passo com Velocidade e Direcção Controladas e com Binário de Arranque Aumentado, : FCT-UNL, February, 2009. Abstract
Os motores passo a passo podem ser vistos como motores eléctricos sem comutação electromecânica (escovas e anéis). Tipicamente, todos os enrolamentos no motor são parte do estator, e o rotor ou é um magneto permanente ou, no caso dos motores de relutância variável, um bloco dentado de algum material ferro-magnético macio. Toda a comutação deve ser lidada externamente pelo controlador do motor, e normalmente, os motores e os controladores são dimensionados de modo que o motor possa ser posicionado numa posição fixa, assim como rodar em ambos os sentidos. Os motores passo a passo podem ser usados em sistemas de controlo em malha aberta; estes são geralmente adequados para sistemas que operam em baixas acelerações com cargas fixas, mas o controlo em malha fechada pode ser essencial para acelerações elevadas, particularmente se envolverem cargas variáveis. Se um motor de passo num sistema de controlo em malha aberta sofre um binário demasiado grande, todo o conhecimento da posição do rotor será perdido e o sistema deverá ser reiniciado. Nesta dissertação, é proposto um novo conversor elétrico em malha aberta, especialmente dimensionado para motores de pequenas dimensões e de alto binário, alimentados com correntes unidirecionais. Este conversor é baseado na mudança do declive de subida da corrente em cada enrolamento, através da descarga de um condensador adicional carregado.
Mudrov, M., A. Ziuzev, K. Nesterov, and S. Valtchev, "Asynchronous electric drive power-hardware-in-the-loop system", Proceedings - 2018 17th International Ural Conference on AC Electric Drives, ACED 2018, vol. 2018-April, United States, Institute of Electrical and Electronics Engineers Inc., pp. 1–5, 4, 2018. Abstract

Power Hardware-in-the-Loop (PHiL) system for asynchronous electric drives application based on power inverter with Field Programmable Gate Array (FPGA)-based control system is discussed. Proposed PHiL structure and scheme for asynchronous electric drives are under discussion as well. Described PHiL can be used for power inverters multi-stage testing.

C
Natchev, B., and S. Valtchev, "Control System for Power Converter of DC to Sinusoidal AC Voltage", National Conference (with international participation) of Power Electronics SILEKTRON?83, 1983.
Inácio, D., J. A. Inácio, J. Pina, S. Valtchev, M. Neves, J. Martins, and A. Rodrigues, "Conventional and HTS Disc motor with pole variation control", 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG'2009), pp. 513–518, 2009. Abstract
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a high temperature superconductor (HTS) disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software (FLUX2D), whereas superconductivity was simulated by the E-J power law. The electromechanical performance of both motor's computed are compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, D., S. Inácio, J. Pina, S. Valtchev, M. V. Neves, J. F. A. Martins, and A. L. Rodrigues, "Conventional and HTS disc motor with pole variation control", POWERENG 2009 - 2nd International Conference on Power Engineering, Energy and Electrical Drives Proceedings, pp. 513-518, 2009. Abstract
n/a
D
Natchev, B., and S. Valtchev, "Driver Circuit for Power Transistor Switches", National Conference (with international participation) of Power Electronics SILEKTRON?83, 1983.
E
Mudrov, M., A. Ziuzev, K. Nesterov, and S. Valtchev, "Electric Drives Power-Hardware-in-the-Loop System Structures", 2018 20th European Conference on Power Electronics and Applications, EPE 2018 ECCE Europe, United States, Institute of Electrical and Electronics Engineers Inc., 10, 2018. Abstract

Power-Hardware-in-the-Loop (PHiL) system for electric drives application based on power converter with Field Programmable Gate Array (FPGA)-based control system is discussed. PHiL structures are under discussion as well. During the PHiL mathematical model analysis instantaneous current repeating quality is increased. Variable frequency drive (VFD) was selected for testing.

Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues, "An electrical gearbox by means of pole variation for induction and superconducting disc motor", Journal of Physics: Conference Series, vol. 97, pp. 012221, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, S., D. Inácio, J. Pina, S. Valtchev, V. M. Neves, and A. Rodrigues, "An Electrical Gearbox by means of pole variation for induction and superconducting disc motor", 8th European Conference on Applied Superconductivity (EUCAS), 2007. Abstract
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues, "An electrical gearbox by means of pole variation for induction and superconducting disc motor", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
F
Mudrov, M., A. Zyuzev, K. Nesterov, and S. Valtchev, "FPGA-based Hardware-in-the-Loop system bits capacity evaluation based on induction motor model", Conference Proceedings - 2017 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, United States, Institute of Electrical and Electronics Engineers Inc., 7, 2017. Abstract

The Hardware-in-the-Loop (HiL) systems become nowadays popular. In the same time, the Field Programmable Gate Arrays (FPGAs) allow for creating the HiL with time step 1 μs or less. The FPGA usually executes the numerical operations on Fixed Point variables. That is why during the FPGA-based HiL creation process it is important to select a proper number of bits for the modeled variables. A mathematical model based on the induction motor is selected as a basis for comparative tests between the floating point model and the fixed point model. In consequence, recommendations for the Bit Capacity (the length of the digital word) selection are given, based on the obtained results.

H
Pina, J., C. Caracaleanu, A. Gonçalves, P. Pereira, S. Valtchev, M. Neves, and A. Rodrigues, "High Performance, Environment Friendly, Modular and Fault Tolerant Renewable Energy Microgrid", 12th International Energy Conference & Exhibition (ENERGEX2007), 2007.
I
Mihaylov, K., R. Neves-Medeiros, R. Arnaudov, and S. Valtchev, "Investigation of the Tesla Transformer as a Device for One-Wire Power and Signaling and as a Device for Power and Signaling Through the Ground", {IFIP} Advances in Information and Communication Technology: Springer Science $\mathplus$ Business Media, pp. 459–466, 2015. Abstract
n/a
N
Sousa, P., S. Valtchev, M. Neves, and A. Rodrigues, "A New Open-Loop Control Method for Stepping Motor Driving", 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG'2009), pp. 605–610, 2009.
Sousa, P., S. Valtchev, M. V. Neves, and A. L. Rodrigues, "A new open-loop control method for stepping motor driving", POWERENG 2009 - 2nd International Conference on Power Engineering, Energy and Electrical Drives Proceedings, pp. 605-610, 2009. Abstract
n/a
P
Vasilev, V., B. Natchev, and S. Valtchev, "Power Converter of DC to Sinusoidal AC Voltage for Robotic Purposes", Scientific Session VMEI?83, Section Robotics, 1983.
Mudrov, M., A. Ziuzev, K. Nesterov, and S. Valtchev, "Power electrical drive Power-Hardware-in-the-Loop system: 2018 X International Conference on Electrical Power Drive Systems (ICEPDS)", 2018 10th International Conference on Electrical Power Drive Systems, ICEPDS 2018 - Conference Proceedings, United States, Institute of Electrical and Electronics Engineers Inc., 12, 2018. Abstract

Power Hardware-in-the-Loop (PHiL) system for electric drives application based on power converter with Field Programmable Gate Array (FPGA) -based control system which realizes in real time model of converter, motor and mechanism is discussed. Two PHiL structures are under consideration. Difference between both of them is shown. Test results obtained in the PHiLs with Converter Under Test (CUT) control system are presented in the paper. Proposed PHIL is intended for converters testing and for their operating modes studying. The PHIL repeats electric drive instantaneous current and angular velocity.

Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, V. M. Neves, and A. L. Rodrigues, "Power electronics performance in cryogenic environment: evaluation for use in HTS power devices", Journal of Physics: Conference Series, vol. 97: iopscience, pp. 012219, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.
Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, M. Neves, and A. Rodrigues, "Power Electronics Performance in Cryogenic Environment: Evaluation for Use in HTS Power Devices", 8th European Conference on Applied Superconductivity (EUCAS), September, 2007. Abstract
Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications
Pereira, P., S. Valtchev, J. Pina, A. Gon?alves, M. V. Neves, and A. L. Rodrigues, "Power electronics performance in cryogenic environment: Evaluation for use in HTS power devices", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
Inácio, S., Projecto de uma caixa de velocidades eléctrica por meio da variação do número de pólos para motores em disco de rotor em alumínio e em materiais supercondutores de alta temperatura (SAT), : FCT-UNL, May, 2008. Abstract
Nesta dissertação apresenta-se um motor em disco polifásico inovador bem como uma estratégia de controlo com base no método de variação de velocidade por comutação do número de pares de pólos. A configuração das bobinas aliada à escolha das correntes e tensões que se injectam nas bobinas dos estatores, permite comutar electronicamente o número de pólos do motor entre 2, 4 6 e 8 pólos, conseguindo-se controlar a característica binário?velocidade do motor. O motor em disco possui a bobinagem feita em cobre com dois semi-estatores, em que quando utiliza o rotor em alumínio (com condutividade diferente de zero) comporta-se como um motor de indução convencional. Quando se substitui o rotor em alumínio por um constituído por um supercondutor de alta temperatura (SAT), o dispositivo comporta-se como um motor de histerese. O princípio de funcionamento do motor em disco convencional é baseado na indução de força electromotrizes no rotor e, consequentemente, uma vez que o alumínio é bom condutor eléctrico, correntes eléctricas induzidas, originadas por haver um campo magnético variável que é criado pelos semi-estatores. O comportamento deste tipo de motores, no que diz respeito a principais características (como o binário?velocidade para os diferentes números de pares de pólos), circuito equivalente de Steinmetz, entre outras teorias associadas é já conhecido há bastante tempo. O princípio de funcionamento do motor SAT é diferente do apresentado anteriormente, funciona com base na dinâmica de vórtices e devido ao facto de aparecer o fenómeno de ancoragem de fluxo (flux pinning) nos supercondutores de alta temperatura. Como o campo magnético varia, então o disco roda. Este motor tem um princípio de funcionamento muito mais complexo que o motor de indução sendo a obtenção do modelo do motor SAT complicada. A obtenção do modelo do motor SAT não é abordado nesta dissertação. Os comportamentos e modos de operação do motor com disco de alumínio e em materiais SAT são simulados através de um programa comercial de elementos finitos, nesta dissertação, sendo a supercondutividade simulada com base na relação entre o campo eléctrico e a densidade de corrente pela lei da potenciação (E-J power law). Com as simulações pretende-se comparar o rendimento electromecânico de ambos os motores.
T
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, M. Neves, and A. Rodrigues, "A test rig for thrust force measurements f an all HTS linear synchronous motor", 8th European Conference on Applied Superconductivity (EUCAS), 2007. Abstract
This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, V. M. Neves, A. Alvarez, and L. Rodrigues, "A test rig for thrust force measurements of an all HTS linear synchronous motor", Journal of Physics: Conference Series, vol. 97: IOPScience, pp. 012220, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.
Pina, J., P. Pereira, S. Valtchev, A. Gon?alves, M. V. Neves, A. Alvarez, and L. Rodrigues, "A test rig for thrust force measurements of an all HTS linear synchronous motor", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
Steve, I., J. Pina, S. Valtchev, M. Neves, and A. Rodrigues, "Topology of an Electrical Gearbox with Variable Poles for Induction and Superconducting Disc Motors", X Portuguese-Spanish Congress in Electrical Engineering, 2007.
W
Valtchev, S., R. Neves-Medeiros, A. Krusteva, G. Gigov, and P. Avramov, "A wireless energy transceiver based on induction heating equipment", 2014 16th International Power Electronics and Motion Control Conference and Exposition: Institute of Electrical {&} Electronics Engineers ({IEEE}), sep, 2014. Abstract
n/a