Publications

Export 84 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Dell'acqua, S., S. R. Pauleta, P. M. P. de Sousa, E. Monzani, L. Casella, JJG Moura, and I. Moura. "A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica." Journal of Biological Inorganic Chemistry. 15 (2010): 967-976. AbstractWebsite

The final step of bacterial denitrification, the two-electron reduction of N2O to N-2, is catalyzed by a multi-copper enzyme named nitrous oxide reductase. The catalytic centre of this enzyme is a tetranuclear copper site called CuZ, unique in biological systems. The in vitro reconstruction of the activity requires a slow activation in the presence of the artificial electron donor, reduced methyl viologen, necessary to reduce CuZ from the resting non-active state (1Cu(II)/3Cu(I)) to the fully reduced state (4Cu(I)), in contrast to the turnover cycle, which is very fast. In the present work, the direct reaction of the activated form of Pseudomonas nautica nitrous oxide reductase with stoichiometric amounts of N2O allowed the identification of a new reactive intermediate of the catalytic centre, CuZA degrees, in the turnover cycle, characterized by an intense absorption band at 680 nm. Moreover, the first mediated electrochemical study of Ps. nautica nitrous oxide reductase with its physiological electron donor, cytochrome c-552, was performed. The intermolecular electron transfer was analysed by cyclic voltammetry, under catalytic conditions, and a second-order rate constant of (5.5 +/- A 0.9) x 10(5) M-1 s(-1) was determined. Both the reaction of stoichiometric amounts of substrate and the electrochemical studies show that the active CuZA degrees species, generated in the absence of reductants, can rearrange to the resting non-active CuZ state. In this light, new aspects of the catalytic and activation/inactivation mechanism of the enzyme are discussed.

Pauleta, S. R., S. Dell'acqua, and I. Moura. "Nitrous oxide reductase." Coordination Chemistry Reviews. 257 (2013): 332-349. AbstractWebsite

Nitrous oxide is a potent greenhouse gas, whose atmospheric concentration has been increasing since the introduction of the Haber Bosch process led to the widespread use of nitrogenous fertilizers. One of the pathways to its destruction is reduction to molecular nitrogen by the enzyme nitrous oxide reductase found in denitrifying bacteria. This enzyme catalyzes the last step of the denitrification pathway. It has two copper centers, a binuclear CuA center, similar to the one found in cytochrome c oxidase, and the CuZ center, a unique tetranuclear copper center now known to possess either one or two sulfide bridges. Nitrous oxide reductase has been isolated in different forms, depending on the oxidation state and molecular forms of its Cu centers. Recently, the structure of a purple form, which has both centers in the oxidized state, revealed that the CuZ center has the form [Cu4S2]. This review summarizes the biogenesis and regulation of nitrous oxide reductase, and the spectroscopic and kinetic properties of nitrous oxide reductase. The proposed activation and catalytic mechanism, as well as, electron transfer pathways are discussed in the light of the various structures of the CuZ center. (C) 2012 Published by Elsevier B.V.

Pauleta, S. R., A. G. Duarte, M. S. Carepo, AS Pereira, P. Tavares, I. Moura, and J. J. Moura. "NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo-Cu cluster." Biomol NMR Assign. 1 (2007): 81-3. AbstractWebsite

We report the 98% assignment of the apo-form of an orange protein, containing a novel Mo-Cu cluster isolated from Desulfovibrio gigas. This protein presents a region where backbone amide protons exchange fast with bulk solvent becoming undetectable. These residues were assigned using 13C-detection experiments.

Maiti, B. K., L. B. Maia, K. Pal, B. Pakhira, T. Aviles, I. Moura, S. R. Pauleta, J. L. Nunez, A. C. Rizzi, CD Brondino, S. Sarkar, and J. J. Moura. "One electron reduced square planar bis(benzene-1,2-dithiolato) copper dianionic complex and redox switch by O2/HO(-)." Inorg Chem. 53 (2014): 12799-808. AbstractWebsite

The complex [Ph4P]2[Cu(bdt)2] (1(red)) was synthesized by the reaction of [Ph4P]2[S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound [Ph4P][Cu(bdt)2] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a "thiyl radical character". Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures [Cu(I)(bdt2, 4S(3-,)*)](2-) <--> [Cu(II)(bdt2, 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, [Cu(III)(bdt2, 4S(4-))](1-).

Carepo, M. S., C. Carreira, R. Grazina, M. E. Zakrzewska, A. Dolla, C. Aubert, S. R. Pauleta, J. J. Moura, and I. Moura. "Orange protein from Desulfovibrio alaskensis G20: insights into the Mo-Cu cluster protein-assisted synthesis." J Biol Inorg Chem. 21 (2016): 53-62. AbstractWebsite

A novel metalloprotein containing a unique [S2MoS2CuS2MoS2](3-) cluster, designated as Orange Protein (ORP), was isolated for the first time from Desulfovibrio gigas, a sulphate reducer. The orp operon is conserved in almost all sequenced Desulfovibrio genomes and in other anaerobic bacteria, however, so far D. gigas ORP had been the only ORP characterized in the literature. In this work, the purification of another ORP isolated form Desulfovibrio alaskensis G20 is reported. The native protein is monomeric (12443.8 +/- 0.1 Da by ESI-MS) and contains also a MoCu cluster with characteristic absorption bands at 337 and 480 nm, assigned to S-Mo charge transfer bands. Desulfovibrio alaskensis G20 recombinant protein was obtained in the apo-form from E. coli. Cluster reconstitution studies and UV-visible titrations with tetrathiomolybdate of the apo-ORP incubated with Cu ions indicate that the cluster is incorporated in a protein metal-assisted synthetic mode and the protein favors the 2Mo:1Cu stoichiometry. In Desulfovibrio alaskensis G20, the orp genes are encoded by a polycistronic unit composed of six genes whereas in Desulfovibrio vulgaris Hildenborough the same genes are organized into two divergent operons, although the composition in genes is similar. The gene expression of ORP (Dde_3198) increased 6.6 +/- 0.5 times when molybdate was added to the growth medium but was not affected by Cu(II) addition, suggesting an involvement in molybdenum metabolism directly or indirectly in these anaerobic bacteria.

Fiévet, Anouchka, Meriem Merrouch, Gaël Brasseur, Danaé Eve, Emanuele G. Biondi, Odile Valette, Sofia R. Pauleta, Alain Dolla, Zorah Dermoun, Bénédicte Burlat, and Corinne Aubert. "OrpR is a σ54-dependent activator using an iron-sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough." Molecular MicrobiologyMolecular Microbiology. 116.1 (2021): 231-244. AbstractWebsite

Abstract Enhancer binding proteins (EBPs) are key players of σ54-regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54-RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe?4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe?S redox regulator belonging to the σ54-dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.

Pauleta, S. R., F. Guerlesquin, C. F. Goodhew, B. Devreese, J. VanBeeumen, AS Pereira, I. Moura, and G. W. Pettigrew. "Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase." Biochemistry. 43 (2004): 11214-25. AbstractWebsite

The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic-strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.

Máximo, Patrícia, Miriam Colaço, Sofia R. Pauleta, Paulo J. Costa, Uwe Pischel, Jorge A. Parola, and Nuno Basílio. "Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release." Organic Chemistry Frontiers. 9.16 (2022): 4238-4249. AbstractWebsite

The cucurbit[8]uril (CB8) synthetic receptor is shown to form high-affinity host–guest complexes with dicationic dithienylethene (DTE) photoswitches in water. ITC experiments combined with computational studies suggest that the formation of the inclusion complexes is mainly driven by a combination of hydrophobic effects, ion–dipole, hydrogen- and chalcogen-bonding interactions. The binding affinities were observed to be much higher for the DTE closed isomers, reaching values in the picomolar range (up to 1011 M−1) while the open isomers display up to 10 000-fold lower affinities, setting ideal conditions for the development of robust photoswitchable host–guest complexes. The light-responsive affinity of these photoswitches toward CB8 was explored to control the encapsulation and release of nanomolar affinity steroids via competitive guest replacement.

Almeida, R. M., S. Dell'acqua, L. Krippahl, J. J. Moura, and S. R. Pauleta. "Predicting Protein-Protein Interactions Using BiGGER: Case Studies." Molecules. 21 (2016). AbstractWebsite

The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A) in which no specific contact data is available; (Case Study B) when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling) on one of the partners is available; and (Case Study C) when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.

Cameron, D. L., J. Jakus, S. R. Pauleta, G. W. Pettigrew, and A. Cooper. "Pressure Perturbation Calorimetry and the Thermodynamics of Noncovalent Interactions in Water: Comparison of Protein-Protein, Protein-Ligand, and Cyclodextrin-Adamantane Complexes." Journal of Physical Chemistry B. 114 (2010): 16228-16235. AbstractWebsite

Pressure perturbation calorimetry measurements on a range of cyclodextrin adamantane, protein ligand (lysozyme-(GlcNac)(3) and ribonuclease-2'CMP) and protein-protein (cytochrome c peroxidase-pseudoazurin) complexes in aqueous solution show consistent reductions in thermal expansibilities compared to the uncomplexed molecules. Thermodynamic data for binding, obtained by titration calorimetry, are also reported. Changes in molar expansibilities can be related to the decrease in solvation during complexation. Although reasonable estimates for numbers of displaced water molecules may be obtained in the case of rigid cyclodextrin-adamantane complexes, protein expansibility data are less easily reconciled. Comparison of data from this wide range of systems indicates that effects are not simply related to changes in solvent-accessible surface area, but may also involve changes in macromolecular dynamics and flexibility. This adds to the growing consensus that understanding thermodynamic parameters associated with noncovalent interactions requires consideration of changes in internal macromolecular fluctuations and dynamics that may not be related to surface area-related solvation effects alone.

Maiti, B. K., L. B. Maia, S. R. Pauleta, I. Moura, and J. J. Moura. "Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S2MoS2-M-S2MoS2 Clusters with M = Fe, Co, Ni, Cu, or Cd within the Orange Protein." Inorg Chem (2017). AbstractWebsite

The Orange Protein (ORP) is a small bacterial protein, of unknown function, that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3-, noncovalently bound. The apo-ORP is able to promote the formation and stabilization of this cluster, using CuII- and MoVIS42- salts as starting metallic reagents, to yield a Mo/Cu-ORP that is virtually identical to the native ORP. In this work, we explored the ORP capability of promoting protein-assisted synthesis to prepare novel protein derivatives harboring molybdenum heterometallic clusters containing iron, cobalt, nickel, or cadmium in place of the "central" copper (Mo/Fe-ORP, Mo/Co-ORP, Mo/Ni-ORP, or Mo/Cd-ORP). For that, the previously described protein-assisted synthesis protocol was extended to other metals and the Mo/M-ORP derivatives (M = Cu, Fe, Co, Ni, or Cd) were spectroscopically (UV-visible and electron paramagnetic resonance (EPR)) characterized. The Mo/Cu-ORP and Mo/Cd-ORP derivatives are stable under oxic conditions, while the Mo/Fe-ORP, Mo/Co-ORP, and Mo/Ni-ORP derivatives are dioxygen-sensitive and stable only under anoxic conditions. The metal and protein quantification shows the formation of 2Mo:1M:1ORP derivatives, and the visible spectra suggest that the expected {S2MoS2MS2MoS2} complexes are formed. The Mo/Cu-ORP, Mo/Co-ORP, and Mo/Cd-ORP are EPR-silent. The Mo/Fe-ORP derivative shows an EPR S = 3/2 signal (E/D approximately 0.27, g approximately 5.3, 2.5, and 1.7 for the lower M= +/-1/2 doublet, and g approximately 5.7 and 1.7 (1.3 predicted) for the upper M = +/-3/2 doublet), consistent with the presence of either one S = 5/2 FeIII antiferromagnetically coupled to two S = 1/2 MoV or one S = 3/2 FeI and two S = 0 MoVI ions, in both cases in a tetrahedral geometry. The Mo/Ni-ORP shows an EPR axial S = 1/2 signal consistent with either one S = 1/2 NiI and two S = 0 MoVI or one S = 1/2 NiIII antiferromagnetically coupled to two S = 1/2 MoV ions, in both cases in a square-planar geometry. The Mo/Cu-ORP and Mo/Cd-ORP are described as {MoVI-CuI-MoVI} and {MoVI-CdII-MoVI}, respectively, while the other derivatives are suggested to exist in at least two possible electronic structures, {MoVI-MI-MoVI} <--> {MoV-MIII-MoV}.

Carreira, Cíntia, Margarida M. C. dos Santos, Sofia R. Pauleta, and Isabel Moura. "Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus – An electrochemical study." 133 (2020): 107483. AbstractWebsite

Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, “CuZ”, which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.

Johnston, E. M., S. Dell'acqua, S. R. Pauleta, I. Moura, and E. I. Solomon. "Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity." Chem Sci. 6 (2015): 5670-5679. AbstractWebsite

Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a mu2-thiolate edge ligand from the observation of S-H bending modes in the resonance Raman spectrum at 450 and 492 cm-1 that have significant deuterium isotope shifts (-137 cm-1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu-S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a mu2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered.

Maiti, Biplab K., Teresa Avilés, Marta S. P. Carepo, Isabel Moura, Sofia R. Pauleta, and José J. G. Moura. "Rearrangement of Mo-Cu-S Cluster Reflects the Structural ­Instability of Orange Protein Cofactor." Zeitschrift für anorganische und allgemeine Chemie. 639 (2013): 1361-1364. AbstractWebsite
n/a
Neca, A. J., R. Soares, M. S. Carepo, and S. R. Pauleta. "Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough." Biomol NMR Assign. 10 (2016): 117-20. AbstractWebsite

We report the 94 % assignment of DVU2108, a protein belonging to the Orange Protein family, that in Desulfovibrio vulgaris Hildenborough forms a protein complex named the Orange Protein complex. This complex has been shown to be implicated in the cell division of this organism. DVU2108 is a conserved protein in anaerobic microorganisms and in Desulfovibrio gigas the homologous protein was isolated with a novel Mo-Cu cluster non-covalently attached to the polypeptide chain. However, the heterologously produced DVU2108 did not contain any bound metal. These assignments provide the means to characterize the interaction of DVU2108 with the proteins that form the Orange Protein complex using NMR methods.

Almeida, R. M., S. R. Pauleta, I. Moura, and JJG Moura. "Rubredoxin as a paramagnetic relaxation-inducing probe." Journal of Inorganic Biochemistry. 103 (2009): 1245-1253. AbstractWebsite

The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with impaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes. (C) 2009 Elsevier Inc. All rights reserved.

Maiti, B. K., I. Moura, J. J. Moura, and S. R. Pauleta. "The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster." Biochim Biophys Acta. 1857 (2016): 1422-9. AbstractWebsite

A linear cluster formulated as [S2MoS2CuS2MoS2](3-), a unique heterometallic cluster found in biological systems, was identified in a small monomeric protein (named as Orange Protein). The gene coding for this protein is part of an operon mainly present in strict anaerobic bacteria, which is composed (in its core) by genes coding for the Orange Protein and two ATPase proposed to contain Fe-S clusters. In Desulfovibrio desulfuricans G20, there is an ORF, Dde_3197 that encodes a small protein containing several cysteine residues in its primary sequence. The heterologously produced Dde_3197 aggregates mostly in inclusion bodies and was isolated by unfolding with a chaotropic agent and refolding by dialysis. The refolded protein contained sub-stoichiometric amounts of iron atoms/protein (0.5+/-0.2), but after reconstitution with iron and sulfide, high iron load contents were detected (1.8+/-0.1 or 3.4+/-0.2) using 2- and 4-fold iron excess. The visible absorption spectral features of the iron-sulfur clusters in refolded and reconstituted Dde_3197 are similar and resemble the ones of [2Fe-2S] cluster containing proteins. The refolded and reconstituted [2Fe-2S] Dde_3197 are EPR silent, but after reduction with dithionite, a rhombic signal is observed with gmax=2.00, gmed=1.95 and gmin=1.92, consistent with a one-electron reduction of a [2Fe-2S](2+) cluster into a [2Fe-2S](1+) state, with an electron spin of S=(1/2). The data suggests that Dde_3197 can harbor one or two [2Fe-2S] clusters, one being stable and the other labile, with quite identical spectroscopic properties, but stable to oxygen.

Nobrega, C. S., I. H. Saraiva, C. Carreira, B. Devreese, M. Matzapetakis, and S. R. Pauleta. "The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase." Biochim Biophys Acta. 1857 (2016): 169-76. AbstractWebsite

Neisseria gonorrhoeae colonizes the genitourinary track, and in these environments, especially in the female host, the bacteria are subjected to low levels of oxygen, and reactive oxygen and nitrosyl species. Here, the biochemical characterization of N. gonorrhoeae Laz is presented, as well as, the solution structure of its soluble domain determined by NMR. N. gonorrhoeae Laz is a type 1 copper protein of the azurin-family based on its spectroscopic properties and structure, with a redox potential of 277+/-5 mV, at pH7.0, that behaves as a monomer in solution. The globular Laz soluble domain adopts the Greek-key motif, with the copper center located at one end of the beta-barrel coordinated by Gly48, His49, Cys113, His118 and Met122, in a distorted trigonal geometry. The edge of the His118 imidazole ring is water exposed, in a surface that is proposed to be involved in the interaction with its redox partners. The heterologously expressed Laz was shown to be a competent electron donor to N. gonorrhoeae cytochrome c peroxidase. This is an evidence for its involvement in the mechanism of protection against hydrogen peroxide generated by neighboring lactobacilli in the host environment.

Pauleta, S. R., M. S. P. Carepo, and I. Moura. "Source and reduction of nitrous oxide." Coordination Chemistry Reviews. 387 (2019): 436-449. AbstractWebsite
n/a
E. Johnston, C. Carreira, Dell'Acqua Dey Sofia Pauleta Moura Solomon S. S. R. I. "Spectroscopic Definition of the CuZ0 Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism." JACS (2017).
Saponaro, A., S. R. Pauleta, F. Cantini, M. Matzapetakis, C. Hammann, C. Donadoni, L. Hu, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function." Proc Natl Acad Sci U S A. 111 (2014): 14577-82. AbstractWebsite

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.

Qiu, Y., S. R. Pauleta, Y. Lu, C. F. Goodhew, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes associated with calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Journal of Inorganic Biochemistry. 86 (2001): 386. AbstractWebsite
n/a
Pauleta, S. R., Y. Lu, C. F. Goodhew, Y. Qiu, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes in the calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Biophysical Journal. 82 (2002): 14A. AbstractWebsite
n/a
Pettigrew, G. W., A. Echalier, and S. R. Pauleta. "Structure and mechanism in the bacterial dihaem cytochrome c peroxidases." Journal of Inorganic Biochemistry. 100 (2006): 551-567. AbstractWebsite

The bacterial cytochroine c peroxidases contain an electron-transferring haem c (E) and a peroxidatic haem c (P). Many are isolated in an inactive oxidised state. Reduction of the E baem promotes Ca2+-dependent spin state and coordination changes at the P haem rendering it accessible to ligand. Recent crystallographic work on the oxidised and mixed valence enzymes has suggested a mechanism by which an electron entering the E haem remotely triggers this activation of the P haem. Binding of hydrogen peroxide at the activated P haem leads to an intermediate catalytic form containing two oxidising equivalents, one of which is a ferryl oxene. This form of the enzyme is then reduced by two single electron transfers to the E haem delivered by small redox proteins such as cytochromes or cupredoxins. The binding of these small redox proteins is dominated by global electrostatic forces but the interfaces of the electron transfer complexes that are formed are largely hydrophobic and relatively non-specific. These features allow very high electron transfer rates in the steady state. (c) 2006 Elsevier Inc. All rights reserved.

Almeida, R. M., P. Turano, I. Moura, J. J. Moura, and S. R. Pauleta. "Superoxide reductase: different interaction modes with its two redox partners." ChemBioChem. 14 (2013): 1858-66. AbstractWebsite

Anaerobic organisms have molecular systems to detoxify reactive oxygen species when transiently exposed to oxygen. One of these systems is superoxide reductase, which reduces O2 (.-) to H2 O2 without production of molecular oxygen. In order to complete the reduction of superoxide anion, superoxide reductase requires an electron, delivered by its redox partners, which in Desulfovibrio gigas are rubredoxin and/or desulforedoxin. In this work, we characterized the interaction of Desulfovibrio gigas superoxide reductase with both electron donors by using steady-state kinetics, 2D NMR titrations, and backbone relaxation measurements. The rubredoxin surface involved in the electron transfer complex with superoxide reductase comprises the solvent-exposed hydrophobic residues in the vicinity of its metal center (Cys9, Gly10, Cys42, Gly43, and Ala44), and a Kd of 3 muM at 59 mM ionic strength was estimated by NMR. The ionic strength dependence of superoxide-mediated rubredoxin oxidation by superoxide reductase has a maximum kapp of (37 +/- 12) min(-1) at 157 mM. Relative to the electron donor desulforedoxin, its complex with superoxide reductase was not detected by chemical shift perturbation, though this protein is able to transfer electrons to superoxide reductase with a maximum kapp of (31 +/- 7) min(-1) at an ionic strength of 57 mM. Competition experiments using steady-state kinetics and NMR spectroscopy (backbone relaxation measurements and use of a paramagnetic relaxation enhancement probe) with Fe-desulforedoxin in the presence of (15) N-Zn-rubredoxin showed that these two electron donors compete for the same site on the enzyme surface, as shown in the model structure of the complex generated by using restrained molecular docking calculations. These combined strategies indicate that the two small electron donors bind in different manners, with the desulforedoxin complex being a short lived electron transfer complex or more dynamic, with many equivalent kinetically competent orientations.