Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Saponaro, A., C. Donadoni, S. R. Pauleta, F. Cantini, M. Matzapetakis, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "HCN Channels: The Molecular Basis for their cAMP-TRIP8b Regulation." Biophysical Journal. Vol. 108. Biophys J, 108. 2015. 366a. Abstract
n/a
Saponaro, A., S. R. Pauleta, F. Cantini, M. Matzapetakis, C. Hammann, C. Donadoni, L. Hu, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function." Proc Natl Acad Sci U S A. 111 (2014): 14577-82. AbstractWebsite

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.

Saponaro, A., M. Matzapetakis, A. Moroni, and S. Pauleta. "Structural rearrangements occurring on HCN2 CNBD domain upon cAMP binding." European Biophysics Journal with Biophysics Letters. Vol. 42. Eur Biophys J Biophy, 42. 2013. S181. Abstract
n/a
Saponaro, A. C., M. Matzapetakis, B. Santoro, S. R. Pauleta, and A. Moroni. "The Auxiliary Subunit TRIP8B Inhibits the Binding of CAMP to HCN2 Channels Through an Allosteric Mechanism." Biophysical Journal. Vol. 106. Biophys J, 106. 2014. 758a. Abstract
n/a
de Sousa, P. M. P., S. R. Pauleta, D. Rodrigues, M. L. S. Goncalves, G. W. Pettigrew, I. Moura, JJG Moura, and M. M. C. dos Santos. "Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study." Journal of Biological Inorganic Chemistry. 13 (2008): 779-787. AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 mu M was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

de Sousa, P. M. P., S. R. Pauleta, M. L. S. Goncalves, G. W. Pettigrew, I. Moura, M. M. C. dos Santos, and JJG Moura. "Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P-pantotrophus pseudoazurin: kinetics of intermolecular electron transfer." Journal of Biological Inorganic Chemistry. 12 (2007): 691-698. AbstractWebsite

This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.