Publications

Export 12 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Moura, I., C. Carreira, S. Pauleta, R. F. Nunes, J. J. Moura, S. Ramos, S. Dell'acqua, and O. Einsle. "INSIGHTS INTO THE CATALYTICCYCLE OF Pseudomonas nautica NITROUS OXIDE REDUCTASE." Journal of Biological Inorganic Chemistry. Vol. 19. J Biol Inorg Chem, 19. 2014. S104. Abstract
n/a
Pauleta, S. R., S. Ramos, M. Pietsch, C. Carreira, S. Dell'acqua, and I. Moura. "Marinobacter hydrocarbonoclasticus is an aerobic denitrifier." 11th European Biological Inorganic Chemistry Conference (Eurobic 11). 2013. 49-52. Abstract

Marinobacter hydrocarbonoclasticus is a marine bacterium widespread in the Mediterranean sea and Atlantic Ocean, and growing at temperate temperatures. This bacterium can perform complete denitrification, reducing nitrate to molecular nitrogen under anaerobic conditions. Here the nitrite concentration, pH and nitrous oxide reductase activity was monitored during bacterial growth, showing that this bacterium can also perform complete denitrification under low oxygen tension, using lactate as carbon source, in the presence of nitrate as alternative electron acceptor. Nitrous oxide reductase activity was observed after 7 h of growth under low oxygen tensions, and is maintained constant after 48h. Nitrite concentration reaches its maximum at mid-exponential phase and in the stationary phase, at lower oxygen tensions is almost non-existent.

Journal Article
Najmudin, S., S. R. Pauleta, I. Moura, and MJ Romao. "The 1.4 angstrom resolution structure of Paracoccus pantotrophus pseudoazurin." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 66 (2010): 627-635. AbstractWebsite

Pseudoazurins are small type 1 copper proteins that are involved in the flow of electrons between various electron donors and acceptors in the bacterial periplasm, mostly under denitrifying conditions. The previously determined structure of Paracoccus pantotrophus pseudoazurin in the oxidized form was improved to a nominal resolution of 1.4 angstrom, with R and R-free values of 0.188 and 0.206, respectively. This high-resolution structure makes it possible to analyze the interactions between the monomers and the solvent structure in detail. Analysis of the high-resolution structure revealed the structural regions that are responsible for monomer-monomer recognition during dimer formation and for protein-protein interaction and that are important for partner recognition. The pseudoazurin structure was compared with other structures of various type 1 copper proteins and these were grouped into families according to similarities in their secondary structure; this may be useful in the annotation of copper proteins in newly sequenced genomes and in the identification of novel copper proteins.

de Sousa, P. M. P., S. R. Pauleta, D. Rodrigues, M. L. S. Goncalves, G. W. Pettigrew, I. Moura, JJG Moura, and M. M. C. dos Santos. "Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study." Journal of Biological Inorganic Chemistry. 13 (2008): 779-787. AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 mu M was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Nóbrega, C. S., M. Raposo, G. Van Driessche, B. Devreese, and S. R. Pauleta. "Biochemical characterization of the bacterial peroxidase from the human pathogen Neisseria gonorrhoeae." Journal of Inorganic Biochemistry. 171 (2017): 108-119. AbstractWebsite
n/a
Thapper, A., A. C. Rizzi, CD Brondino, A. G. Wedd, R. J. Pais, B. K. Maiti, I. Moura, S. R. Pauleta, and J. J. Moura. "Copper-substituted forms of the wild type and C42A variant of rubredoxin." J Inorg Biochem. 127 (2013): 232-7. AbstractWebsite

In order to gain insights into the interplay between Cu(I) and Cu(II) in sulfur-rich protein environments, the first preparation and characterization of copper-substituted forms of the wild-type rubredoxin (Rd) from Desulfovibrio vulgaris Hildenborough are reported, as well as those of its variant C42A-Rd. The initial products appear to be tetrahedral Cu(I)(S-Cys)n species for the wild type (n=4) and the variant C42A (n=3, with an additional unidentified ligand). These species are unstable to aerial oxidation to products, whose properties are consistent with square planar Cu(II)(S-Cys)n species. These Cu(II) intermediates are susceptible to auto-reduction by ligand S-Cys to produce stable Cu(I) final products. The original Cu(I) center in the wild-type system can be regenerated by reduction, suggesting that the active site can accommodate Cu(I)(S-Cys)2 and Cys-S-S-Cys fragments in the final product. The absence of one S-Cys ligand prevents similar regeneration in the C42A-Rd system. These results emphasize the redox instability of Cu(II)-(S-Cys)n centers.

Najmudin, S., C. Bonifacio, A. G. Duarte, S. R. Pauleta, I. Moura, J. J. Moura, and MJ Romao. "Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas." Acta Crystallogr Sect F Struct Biol Cryst Commun. 65 (2009): 730-2. AbstractWebsite

The orange-coloured protein (ORP) from Desulfovibrio gigas is a 12 kDa protein that contains a novel mixed-metal sulfide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)]. Diffracting crystals of the apo form of ORP have been obtained. Data have been collected for the apo form of ORP to 2.25 A resolution in-house and to beyond 2.0 A resolution at ESRF, Grenoble. The crystals belonged to a trigonal space group, with unit-cell parameters a = 43, b = 43, c = 106 A.

Najmudin, S., C. Bonifacio, A. G. Duarte, S. R. Pauleta, I. Moura, JJG Moura, and MJ Romao. "Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas. (vol F65, pg 730, 2009)." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65 (2009): 856. AbstractWebsite
n/a
Johnston, E. M., S. Dell'acqua, S. Ramos, S. R. Pauleta, I. Moura, and E. I. Solomon. "Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase." J Am Chem Soc. 136 (2014): 614-7. AbstractWebsite

N2OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu(Z)* form and the 4Cu2S Cu(Z) form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu(Z)* site accesses the 1-hole and fully reduced redox states, while the Cu(Z) site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N2OR for Cu(Z) and Cu(Z)* poised in these redox states and steady-state turnover assays with different proportions of Cu(Z) and Cu(Z)* show that only fully reduced Cu(Z)* is catalytically competent in rapid turnover with N2O.

Ramos, S., R. M. Almeida, C. M. Cordas, JJG Moura, S. R. Pauleta, and I. Moura. "Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus." Journal of Inorganic Biochemistry. 177 (2017): 402-411. AbstractWebsite
n/a
Rivas, M. G., C. S. Mota, S. R. Pauleta, M. S. P. Carepo, F. Folgosa, S. L. A. Andrade, G. Fauque, AS Pereira, P. Tavares, JJ Calvete, I. Moura, and JJG Moura. "Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254." Journal of Inorganic Biochemistry. 103 (2009): 1314-1322. AbstractWebsite

The isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14 +/- 1 subunits of 15254.3 +/- 7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Further-more, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance. (C) 2009 Published by Elsevier Inc.

Maiti, B. K., L. B. Maia, K. Pal, B. Pakhira, T. Aviles, I. Moura, S. R. Pauleta, J. L. Nunez, A. C. Rizzi, CD Brondino, S. Sarkar, and J. J. Moura. "One electron reduced square planar bis(benzene-1,2-dithiolato) copper dianionic complex and redox switch by O2/HO(-)." Inorg Chem. 53 (2014): 12799-808. AbstractWebsite

The complex [Ph4P]2[Cu(bdt)2] (1(red)) was synthesized by the reaction of [Ph4P]2[S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound [Ph4P][Cu(bdt)2] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a "thiyl radical character". Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures [Cu(I)(bdt2, 4S(3-,)*)](2-) <--> [Cu(II)(bdt2, 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, [Cu(III)(bdt2, 4S(4-))](1-).