Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Pettigrew, G., C. Goodhew, S. Pauleta, C. Costa, I. Moura, J. Moura, N. Palma, L. Krippahl, K. Jumel, S. Harding, and A. Cooper. "Cytochrome c peroxidase and its redox partners - binary and ternary complexes." Journal of Inorganic Biochemistry. 86 (2001): 86. AbstractWebsite
n/a
D
Johnston, E. M., S. Dell'acqua, S. Ramos, S. R. Pauleta, I. Moura, and E. I. Solomon. "Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase." J Am Chem Soc. 136 (2014): 614-7. AbstractWebsite

N2OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu(Z)* form and the 4Cu2S Cu(Z) form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu(Z)* site accesses the 1-hole and fully reduced redox states, while the Cu(Z) site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N2OR for Cu(Z) and Cu(Z)* poised in these redox states and steady-state turnover assays with different proportions of Cu(Z) and Cu(Z)* show that only fully reduced Cu(Z)* is catalytically competent in rapid turnover with N2O.

E
Pettigrew, G. W., S. R. Pauleta, C. F. Goodhew, A. Cooper, M. Nutley, K. Jumel, S. E. Harding, C. Costa, L. Krippahl, I. Moura, and J. Moura. "Electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans containing more than one cytochrome." Biochemistry. 42 (2003): 11968-11981. AbstractWebsite

According to the model proposed in previous papers [Pettigrew, G. W., Prazeres, S., Costa, C., Palma, N., Krippahl, L., and Moura, J. J. (1999) The structure of an electron-transfer complex containing a cytochrome c and a peroxidase, J. Biol. Chem. 274, 11383-11389; Pettigrew, G. W., Goodhew, C. F., Cooper, A., Nutley, M., Jumel, K., and Harding, S. E. (2003) Electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans, Biochemistry 42, 2046-2055], cytochrome c peroxidase of Paracoccus denitrificans can accommodate horse cytochrome c and Paracoccus cytochrome c(550) at different sites on its molecular surface. Here we use H-1 NMR spectroscopy, analytical ultracentrifugation, molecular docking simulation, and microcalorimetry to investigate whether these small cytochromes can be accommodated simultaneously in the formation of a ternary complex. The pattern of perturbation of heme methyl and methionine methyl resonances in binary and ternary solutions shows that a ternary complex can be formed, and this is confirmed by the increase in the sedimentation coefficient upon addition of horse cytochrome c to a solution in which cytochrome c(550) fully occupies its binding site on cytochrome c peroxidase. Docking experiments in which favored binary solutions of cytochrome, c(550) bound to cytochrome c peroxidase act as targets for horse cytochrome c and the reciprocal experiments in which favored binary solutions of horse cytochrome c bound to cytochrome c peroxidase act as targets for cytochrome c(550) show that the enzyme can accommodate both cytochromes at the same time on adjacent sites. Microcalorimetric titrations are difficult to interpret but are consistent with a weakened binding of horse cytochrome c to a binary complex of cytochrome c peroxidase and cytochrome c(550) and binding of cytochrome c(550) to the cytochrome c peroxidase that is affected little by the presence of horse cytochrome c in the other site. The presence of a substantial capture surface for small cytochromes on the cytochrome c peroxidase has implications for rate enhancement mechanisms which ensure that the two electrons required for re-reduction of the enzyme after reaction with hydrogen peroxide are delivered efficiently.

Johnston, E. M., S. Dell'acqua, S. Gorelsky, S. R. Pauleta, I. Moura, and E. I. Solomon. "Electronic structure and reactivities of resting and intermediate forms of the tetranuclear copper cluster in nitrous oxide reductase." Abstracts of Papers of the American Chemical Society. Vol. 248. Abstr Pap Am Chem S, 248. 2014. Abstract
n/a
P
Cameron, D. L., J. Jakus, S. R. Pauleta, G. W. Pettigrew, and A. Cooper. "Pressure Perturbation Calorimetry and the Thermodynamics of Noncovalent Interactions in Water: Comparison of Protein-Protein, Protein-Ligand, and Cyclodextrin-Adamantane Complexes." Journal of Physical Chemistry B. 114 (2010): 16228-16235. AbstractWebsite

Pressure perturbation calorimetry measurements on a range of cyclodextrin adamantane, protein ligand (lysozyme-(GlcNac)(3) and ribonuclease-2'CMP) and protein-protein (cytochrome c peroxidase-pseudoazurin) complexes in aqueous solution show consistent reductions in thermal expansibilities compared to the uncomplexed molecules. Thermodynamic data for binding, obtained by titration calorimetry, are also reported. Changes in molar expansibilities can be related to the decrease in solvation during complexation. Although reasonable estimates for numbers of displaced water molecules may be obtained in the case of rigid cyclodextrin-adamantane complexes, protein expansibility data are less easily reconciled. Comparison of data from this wide range of systems indicates that effects are not simply related to changes in solvent-accessible surface area, but may also involve changes in macromolecular dynamics and flexibility. This adds to the growing consensus that understanding thermodynamic parameters associated with noncovalent interactions requires consideration of changes in internal macromolecular fluctuations and dynamics that may not be related to surface area-related solvation effects alone.

Johnston, E. M., S. Dell'acqua, S. R. Pauleta, I. Moura, and E. I. Solomon. "Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity." Chem Sci. 6 (2015): 5670-5679. AbstractWebsite

Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a mu2-thiolate edge ligand from the observation of S-H bending modes in the resonance Raman spectrum at 450 and 492 cm-1 that have significant deuterium isotope shifts (-137 cm-1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu-S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a mu2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered.