Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Favinha, André G., Daniela S. Barreiro, Joana N. Martins, Philip O'Toole, and Sofia R. Pauleta. "Acrylamide-hemoglobin adduct: A spectroscopic study." 241 (2020): 118644. AbstractWebsite

Acrylamide is a neurotoxic and carcinogenic organic compound that is able to bind to several biomolecules and form adducts, through nucleophilic addition and in vivo by the Maillard Reaction, interfering with the biological functions of these molecules. Hemoglobin is one of the most abundant intracellular blood proteins, and thus it is of high interest to understand whether the binding of acrylamide can alter its properties. The interaction of acrylamide with hemoglobin was assessed in a 20:1 ratio, and after a 72 h-incubation period, a decrease of ca. 50% in the absorbance of the hemoglobin's Soret band was observed at 37 °C. This together with the analysis of circular dichroism spectra indicate that acrylamide binds in close proximity to the heme group. These perturbations were confirmed to not correspond to the loss of the heme group and were mostly reverted after passing the protein through a size-exclusion chromatographic matrix, suggesting a dominant non-covalent interaction for the observed effect. The thermodynamic parameters of unfolding in the absence and presence of acrylamide, suggest an interaction based on H-bonds and van der Waals forces that slightly stabilizes hemoglobin. The oxygen binding capacity of hemoglobin does not seem to be hindered, as no differences in the Q bands were observed in the adduct.

Fiévet, Anouchka, Meriem Merrouch, Gaël Brasseur, Danaé Eve, Emanuele G. Biondi, Odile Valette, Sofia R. Pauleta, Alain Dolla, Zorah Dermoun, Bénédicte Burlat, and Corinne Aubert. "OrpR is a σ54-dependent activator using an iron-sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough." Molecular MicrobiologyMolecular Microbiology. 116.1 (2021): 231-244. AbstractWebsite

Abstract Enhancer binding proteins (EBPs) are key players of σ54-regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54-RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe?4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe?S redox regulator belonging to the σ54-dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.

Fievet, A., L. My, E. Cascales, M. Ansaldi, S. R. Pauleta, I. Moura, Z. Dermoun, C. S. Bernard, A. Dolla, and C. Aubert. "The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by sigma(54) and a Cognate Transcriptional Regulator." Journal of Bacteriology. 193 (2011): 3207-3219. AbstractWebsite

Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the sigma(54)-RNA polymerase. We further demonstrate that the sigma(54)-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with sigma(54)-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the sigma(70)-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed.