{Extended-gate ISFETs based on sputtered amorphous oxides}

Citation:
Pinto, J. V., R. Branquinho, P. Barquinha, E. Alves, R. Martins, and E. Fortunato, "{Extended-gate ISFETs based on sputtered amorphous oxides}", IEEE/OSA Journal of Display Technology, vol. 9, no. 9, pp. 729–734, 2013.

Abstract:

We present the results obtained with an extended-gate ISFET totally based on amorphous oxides (GIZO as the semiconductor, {\textless}formula formulatype="inline"{\textgreater}{\textless}tex Notation="TeX"{\textgreater}{\$}{\{}hbox{\{}Ta{\}}{\}}{\_}{\{}2{\}}{\{}hbox{\{}O{\}}{\}}{\_}{\{}5{\}}{\{}hbox{\{}:SiO{\}}{\}}{\_}{\{}2{\}}{\$}{\textless}/tex{\textgreater} {\textless}/formula{\textgreater} as the dielectric and {\textless}formula formulatype="inline"{\textgreater}{\textless}tex Notation="TeX"{\textgreater}{\$}{\{}hbox{\{}Ta{\}}{\}}{\_}{\{}2{\}}{\{}hbox{\{}O{\}}{\}}{\_}{\{}5{\}}{\$}{\textless}/tex{\textgreater} {\textless}/formula{\textgreater} as the sensitive layer). A full characterization of the device was performed with constant ionic strength pH buffer solutions, revealing a sensitivity of 40 mV/pH with small hysteresis, and good linearity in the pH 4{&}{\#}x2013;pH 10 range buffer solutions. These results clearly show that it is possible to produce room-temperature disposable and low cost bio-sensors.

Notes:

n/a