Monteiro, R. C. C., C. S. Mota, and M. M. R. A. Lima. "
Effect of dolomite addition on the densification of fly ash based ceramics."
Materials Science Forum. 514-516 (2006): 1711-1715.
AbstractFly ash from Tapada do Outeiro, a coal power plant in the north of Portugal, has been processed by a powder technology route in order to obtain durable and mechanical resistant ceramics. Dolomite (CaC03.MgC03) was added in different proportions to the waste material, from zero up to 10 wt%, and the effect of this addition on the densification behaviour of the fired samples was investigated by measuring the apparent density, the open porosity and the linear shrinkage. The powder mixtures were uniaxially dry pressed in a steel die and fired at temperatures ranging from 950 to 1150°C XRD and SEM were used to identify the phases present in the sintered materials and the degree of densification. The results revealed that added dolomite was responsible for the appearance of anorthite, an extra phase besides mullite and quartz, for an increase in the amount of liquid phase and for the swelling of closed pores at the highest firing temperatures. Significant morphological changes and phase transformations occurred during sintering and their effects on the physical-mechanical and leaching characteristics of the sintered materials were analyzed.
Ferreira, I., Raniero Fortunato Martins L. E. R. "
Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy."
Thin Solid Films. 511-512 (2006): 390-393.
AbstractNanocrystalline hydrogenated silicon (nc-Si:H) thin films are generally accepted to be a two phase material-Si crystalline and Si:H amorphous. This work reports the use of impedance spectroscopy to determine the amorphous and crystalline electrical conductivity of a/nc-Si:H films obtained by hot wire chemical vapour deposition. Different relaxation time or time constants are detected, if the film is composed by inhomogeneous material, by measuring ac impedance in a wide range of frequencies. Relating the conduction mechanism of the film to a series of two RC circuits constituted by a resistance and a capacitor in parallel, we may determine distinct ac conductivities and correlate that to the crystalline, amorphous and interface components. The amorphous films analysed exhibit one ac conductivity component while for nanocrystalline films two ac conductivity components are observed. The average value of ac conductivities is in agreement with that of dc conductivity. © 2006.