Pereira, L.a, Aguas Beckers Martins Fortunato Martins H. a M. b. "
Characterization of nickel induced crystallized silicon by spectroscopic ellipsometry."
Materials Research Society Symposium Proceedings. Vol. 910. 2007. 529-534.
AbstractIn this work Spectroscopic Ellipsometry (SE) was used to study metal induced crystallization (MIC) on amorphous silicon films in order to analyze the influence of different annealing conditions on their structural properties. The variation of the metal thickness has shown to be determinant on the time needed to full crystallize silicon films. Films of 100 nm thickness crystallize after 2h at 500°C using 1 nm of Ni deposited on it. When reducing the average metal thickness down to 0.05 nm the same silicon film will need almost 10 hours to be totally crystallized. Using a new approach on the modelling procedure of the SE data we show to be possible to determine the Ni remaining inside the crystallized films. The method consists in using Ni as reference on the Bruggeman Effective Medium Approximation (BEMA) layer that will simulated the optical response of the crystallized silicon. Silicon samples and metal layers with different thicknesses were analyzed and this new method has shown to be sensible to changes on the initial metal/silicon ratio. The nickel distribution inside the silicon layers was independently measured by Rutherford Backscattering Spectroscopy (RBS) to check the data obtained from the proposed approach. © 2006 Materials Research Society.
Inácio, S., D. Inácio, J. Pina, S. Valtchev, Ventim M. Neves, and A. Rodrigues. "
An Electrical Gearbox by means of pole variation for induction and superconducting disc motor."
8th European Conference on Applied Superconductivity (EUCAS). 2007.
AbstractIn this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.