O Portal do docente é uma ferramenta de apoio que permite a cada Professor da FCT NOVA criar autonomamente a sua página pessoal e aí inserir o seu curriculum, divulgar artigos científicos, apresentar as disciplinas leccionadas, partilhar feeds, etc.
Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45 degrees C). Many patents have been registered in this area since the year 2000. This review presents the most relevant information, organizing them according to the hyperthermic method used: 1) external RadioFrequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) apply heating to the target site using a catheter; 5) injection of magnetic and ferroelectric particles; 6) injection of magnetic nanoparticles that may carry a pharmacological active drug. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. An ideal magnetic nanoparticle would be able to detect and diagnose the tumor, carry a pharmacological active drug to be delivered in the tumor site, apply hyperthermia through an external magnetic field and allow treatment monitoring by magnetic resonance imaging.
The aim was to investigate the effect of simulated low-temperature degradation (s-LTD) and hydrothermal fatigue on the degradation of three ZrO2-based dental materials. Lava, IPS, and NanoZr discs were randomly assigned to (1) Control-Storage in distilled water at 37°C; (2) Aging at 134°C for 5 h (s-LTD); (3) Thermocycling in saliva for 30,000 cycles (TF). XRD revealed that ZrO 2 m phase was identified in all groups but TF increased the m phase only for Lava. Under the FESEM, Lava showed no alterations under s-LTD, but displayed corrosion areas up to 60 μm wide after TF. We conclude that TF accelerated the degradation of Lava through an increase in the m phase and grain pull-out from the material surface.
A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H2O2 oxidizes Fe2+ ions at much higher reaction rates than O-2. The H2O2 oxidation of two Fe2+ ions was proven by Mossbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mossbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H2O2 as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.