Export 9208 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Soares, Paula I. P., Frederik Lochte, Coro Echeverria, Laura CJ Pereira, Joana T. Coutinho, Isabel M. M. Ferreira, Carlos M. M. Novo, and others. "Thermal and magnetic properties of iron oxide colloids: influence of surfactants." Nanotechnology. 26 (2015): 425704. Abstract
n/a
Águas, H.a, Mateus Vicente Gaspar Mendes Schmidt Pereira Fortunato Martins T. a A. a. "Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications." Advanced Functional Materials. 25 (2015): 3592-3598. AbstractWebsite

The present development of non-wafer-based photovoltaics (PV) allows supporting thin film solar cells on a wide variety of low-cost recyclable and flexible substrates such as paper, thereby extending PV to a broad range of consumer-oriented disposable applications where autonomous energy harvesting is a bottleneck issue. However, their fibrous structure makes it challenging to fabricate good-performing inorganic PV devices on such substrates. The advances presented here demonstrate the viability of fabricating thin film silicon PV cells on paper coated with a hydrophilic mesoporous layer. Such layer can not only withstand the cells production temperature (150 C), but also provide adequate paper sealing and surface finishing for the cell's layers deposition. The substances released from the paper substrate are continuously monitored during the cell deposition by mass spectrometry, which allows adapting the procedures to mitigate any contamination from the substrate. In this way, a proof-of-concept solar cell with 3.4% cell efficiency (41% fill factor, 0.82 V open-circuit voltage and 10.2 mA cm-2 short-circuit current density) is attained, opening the door to the use of paper as a reliable substrate to fabricate inorganic PV cells for a plethora of indoor applications with tremendous impact in multi-sectorial fields such as food, pharmacy and security. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Águas, H.a, Mateus Vicente Gaspar Mendes Schmidt Pereira Fortunato Martins T. a A. a. "Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications." Advanced Functional Materials (2015). AbstractWebsite

The present development of non-wafer-based photovoltaics (PV) allows supporting thin film solar cells on a wide variety of low-cost recyclable and flexible substrates such as paper, thereby extending PV to a broad range of consumer-oriented disposable applications where autonomous energy harvesting is a bottleneck issue. However, their fibrous structure makes it challenging to fabricate good-performing inorganic PV devices on such substrates. The advances presented here demonstrate the viability of fabricating thin film silicon PV cells on paper coated with a hydrophilic mesoporous layer. Such layer can not only withstand the cells production temperature (150 °C), but also provide adequate paper sealing and surface finishing for the cell's layers deposition. The substances released from the paper substrate are continuously monitored during the cell deposition by mass spectrometry, which allows adapting the procedures to mitigate any contamination from the substrate. In this way, a proof-of-concept solar cell with 3.4% cell efficiency (41% fill factor, 0.82 V open-circuit voltage and 10.2 mA cm-2 short-circuit current density) is attained, opening the door to the use of paper as a reliable substrate to fabricate inorganic PV cells for a plethora of indoor applications with tremendous impact in multi-sectorial fields such as food, pharmacy and security. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Águas, Hugo, Tiago Mateus, António Vicente, Diana Gaspar, Manuel J. Mendes, Wolfgang A. Schmidt, Lu{\'ıs Pereira, Elvira Fortunato, and Rodrigo Martins. "Thin film silicon photovoltaic cells on paper for flexible indoor applications." Advanced Functional Materials. 25 (2015): 3592-3598. Abstract
n/a
Pavan, M.a, Rühle Ginsburg Keller Barad Sberna Nunes Martins Anderson Zaban Fortunato S. b A. b. "TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis." Solar Energy Materials and Solar Cells. 132 (2015): 549-556. AbstractWebsite

Here we present for the first time a TiO2/Cu2O all-oxide heterojunction solar cell entirely produced by spray pyrolysis onto fluorine doped tin oxide (FTO) covered glass substrates, using silver as a back contact. A combinatorial approach was chosen to investigate the impact of the TiO2 window layer and the Cu2O light absorber thicknesses. We observe an open circuit voltage up to 350 mV and a short circuit current density which is strongly dependent of the Cu2O thickness, reaching a maximum of  0.4 mA/cm2. Optical investigation reveals that a thickness of 300 nm spray pyrolysis deposited Cu2O is sufficient to absorb most photons with an energy above the symmetry allowed optical transition of 2.5 eV, indicating that the low current densities are caused by strong recombination in the absorber that consists of small Cu2O grains. © 2014 Elsevier Ltd. All rights reserved.

Branquinho, R., Salgueiro Santa Kiazadeh Barquinha Pereira Martins Fortunato D. A. A. "Towards environmental friendly solution-based ZTO/AlOx TFTs." Semiconductor Science and Technology. 30 (2015). AbstractWebsite

Solution based deposition has been recently considered as a viable option for low-cost flexible electronics. In this context research efforts have been increasingly centred on the development of suitable solution-processed materials for oxide based transistors. Nevertheless, the majority of synthetic routes reported require the use of toxic organic solvents. In this work we report on a new environmental friendly solution combustion synthesis route, using ethanol as solvent, for the preparation of indium/gallium free amorphous zinc-tin oxide (ZTO) thin film transistors (TFTs) including AlOx gate dielectric. The decomposition of ZTO and AlOx precursor solutions, electrical characterization and stability of solution processed ZTO/AlOx TFTs under gate-bias stress, in both air and vacuum atmosphere, were investigated. The devices demonstrated low hysteresis (ΔV=0.23 V), close to zero turn on voltage, low threshold voltage (VT=0.36 V) and a saturation mobility of 0.8 cm2 V-1 s-1 at low operation voltages. Ethanol based ZTO/AlOx TFTs are a promising alternative for applications in disposable, low cost and environmental friendly electronics. © 2015 IOP Publishing Ltd.

Polcyn, {Michael J. }, {Louis L. } Jacobs, {Anne S. } Schulp, and Octávio Mateus Trolling the Cretaceous Seas: Marine Amniotes of Two West Coast Margins. Geological Society of America Abstracts with Programs. Vol. 47, No. 4, p.55, 2015. Abstract

In this session we review the Upper Cretaceous marine amniote records from the west coasts of North America and Africa. Recent work by our group in Angola, on the west coast of Africa, has opened up new fossiliferous localities, producing well-preserved turtles, plesiosaurs, and mosasaurs, ranging in age from Late Turonian to Late Maastrichtian. These African localities were deposited in arid latitudes and highly productive upwelling zones along the passive margin of a growing South Atlantic Ocean. The fossil record of Cretaceous marine amniotes from the West Coast of North America is relatively meager when compared to the African record and the prolific fossil beds laid down in the epicontinental seas of the Western Interior Seaway and northern Europe. Nonetheless, these localities provide an important glimpse of a marine ecosystem that developed on the active margins of a deep ocean basin. Historically considered to be depauperate and endemic, the west coast fauna was characterized by unusual forms such as Plotosaurus, arguably one of the most derived mosasaurs; however, in recent years, additional taxa have been described, revealing species diversity and ecological partitioning within these communities and in some cases, faunal interchange with other regions. The large quantity of well-preserved fossils from the west coast of Africa is influenced in part by its paleogeographic position, deposited within highly productive areas of Hadley Cell controlled upwelling zones. By contrast, the North American west coast localities have been deposited in temperate and higher latitudes since the Late Cretaceous. Nonetheless, the North American and African faunas share some common characteristics in a possessing a mix of endemic and more cosmopolitan forms. Habitat partitioning reflected in tooth form and body size is comparable between the Angolan and the North American west coast, and there is remarkable convergence in taxa which appear to exploit certain like-niches.

Silva, Tiago A. N., A. Carvalho, Nuno M. M. Maia, and John E. Mottershead Uncertainty quantification by fuzzifying an experimental data set. ICEDyn2015 - International Conference on Structural Engineering Dynamics. Lagos, 2015. Abstract
n/a
Palma, A. S., Y. Liu, H. Zhang, Y. Zhang, B. V. McCleary, G. Yu, Q. Huang, L. S. Guidolin, A. E. Ciocchini, A. Torosantucci, D. Wang, AL Carvalho, C. M. Fontes, B. Mulloy, R. A. Childs, T. Feizi, and W. Chai. "Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry." Mol Cell Proteomics (2015). AbstractWebsite

Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes including immunomodulation, anti-cancer activities, pathogen virulence and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a glucome microarray, the first sequence-defined glycome-scale microarray, using a designer approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. The negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear homo and hetero and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signalling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.

Palma, Angelina S., Yan Liu, Hongtao Zhang, Yibing Zhang, Barry V. McCleary, Guangli Yu, Qilin Huang, Leticia S. Guidolin, Andres E. Ciocchini, Antonella Torosantucci, Denong Wang, Ana Luisa Carvalho, Carlos M. G. A. Fontes, Barbara Mulloy, Robert A. Childs, Ten Feizi, and Wengang Chai. "Unravelling Glucan Recognition Systems by Glycome Microarrays Using the Designer Approach and Mass Spectrometry." Molecular & Cellular Proteomics. 14 (2015): 974-988. Abstract
n/a
Barbosa, A. R. a, A. a Lopes, R. a Monteiro, and F. b Castro. "Use of different inorganic solid wastes to produce glass foams." Wastes: Solutions, Treatments and Opportunities - Selected Papers from the 3rd Edition of the International Conference on Wastes: Solutions, Treatments and Opportunities, 2015. 2015. 25-30. Abstract

Cathode Ray Tube (CRT) waste glasses produced from dismantling TV sets were used to prepare glass foams by a simple and economic processing route, consisting of a direct sintering process of mixtures of CRT waste as glass powder with different foaming agents (coal fly ash and limestone quarrying residues). The influence of firing temperature, amount and type of foaming agent on the apparent density, pore size distribution and compressive strength have been studied. The aim of the work was to investigate the possibility to obtain glass foams using exclusively wastes as starting materials, and therefore replacing the conventional raw materials. © 2015 Taylor & Francis Group, London.

Silva, Teresa Pereira, João Pedro Veiga, Daniel PS Oliveira, Maria João Batista, Diogo Rosa, and Ondina M. Figueiredo. "A utilização da radiação de sincrotrão no estudo de materiais geológicos; breve abordagem sobre experiências recentes de um grupo de utilizadores." Geonovas (2015). Abstract
n/a
Pessoa, Joao Costa, Eugenio Garribba, Marino F. A. Santos, and Teresa Santos-Silva. "Vanadium and proteins: Uptake, transport, structure, activity and function." Coordination Chemistry Reviews. 301 (2015): 49-86. Abstract
n/a
Clemmensen, Lars B., Jesper Milàn, Jan Schulz Adolfssen, Eliza Jarl Estrup, Nicolai Frobøse, Nicole Klein, Octávio Mateus, and Oliver Wings. "The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data." Geological Society, London, Special Publications. 434 (2015). AbstractWebsite

In Late Triassic (Norian–Rhaetian) times, the Jameson Land Basin lay at 40° N on the northern part of the supercontinent Pangaea. This position placed the basin in a transition zone between the relatively dry interior of the supercontinent and its more humid periphery. Sedimentation in the Jameson Land Basin took place in a lake–mudflat system and was controlled by orbitally forced variations in precipitation. Vertebrate fossils have consistently been found in these lake deposits (Fleming Fjord Formation), and include fishes, dinosaurs, amphibians, turtles, aetosaurs and pterosaurs. Furthermore, the fauna includes mammaliaform teeth and skeletal material. New vertebrate fossils were found during a joint vertebrate palaeontological and sedimentological expedition to Jameson Land in 2012. These new finds include phytosaurs, a second stem testudinatan specimen and new material of sauropodomorph dinosaurs, including osteologically immature individuals. Phytosaurs are a group of predators common in the Late Triassic, but previously unreported from Greenland. The finding includes well-preserved partial skeletons that show the occurrence of four individuals of three size classes. The new finds support a late Norian–early Rhaetian age for the Fleming Fjord Formation, and add new information on the palaeogeographical and palaeolatitudinal distribution of Late Triassic faunal provinces.

Silva, Tiago A. N., and Maria A. R. Loja Virtual Testing of the Hygrothermal Residual Stresses in Functionally Graded Composites: Modelling and Optimization.. Eds. M. T. Restivo, A. Cardoso, and A. M. Lopes. Online Experimentation: Emergent Technologies and IoT. IFSA Publishing, 2015. Abstract
n/a
Liu, A.a, Liu Zhu Meng Song Shin Fortunato Martins Shan G. a H. a. "A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors." Current Applied Physics. 15 (2015): S75-S81. AbstractWebsite

In this work, we develop a simple and eco-friendly water-inducement method for high-k yttrium oxide (YOx) dielectric. To prepare YOx thin films at low temperature, yttrium nitrate and deionized water were used as the source materials. No toxic organic materials were required in the YOx coating process. The YOx thin film annealed at 350 °C showed a low leakage current density of 2 × 10-9 A/cm2 at 5 MV/cm and a large areal-capacitance of 448 nF/cm2 at 1 kHz. On the basis of its implementation as the gate dielectric, the fully-water-induced In2O3 TFT based on YOx exhibited a high field-effect mobility of 15.98 cm2/Vs, excellent subthreshold swing of 75 mV/dec, an on/off current ratio of 6 × 106, and a negligible hysteresis of 50 mV. The as-fabricated TFT operated at a low voltage (∼1.5 V) and showed high drain current drive capability, enabling oxide TFT with a water-induced high-k dielectric for use in backplane electronics for low-power mobile display applications. © 2015 Elsevier B.V. All rights reserved.

Figueiredo, Ondina M., Teresa Pereira Silva, João Pedro Veiga, Maria João Batista, and Daniel PS Oliveira. "X-ray absorption near-edge spectroscopy (XANES) applied to the speciation of tungsten in Panasqueira mine debris." 4th ENURS and ESRF-Day Meeting of Synchrotron Radiation Users from Portugal. 2015. Abstract
n/a
Barros, Alexandre A., A. N. A. Rita, A. R. C. Duarte, Ricardo A. Pires, Belém Sampaio-Marques, Paula Ludovico, Estevão Lima, João F. Mano, and Rui L. Reis. "{Bioresorbable ureteral stents from natural origin polymers}." Journal of Biomedical Materials Research - Part B Applied Biomaterials. 103 (2015): 608-617. Abstract

In this work, stents were produced from natural origin polysaccharides. Alginate, gellan gum, and a blend of these with gelatin were used to produce hollow tube (stents) following a combination of templated gelation and critical point carbon dioxide drying. Morphological analysis of the surface of the stents was carried out by scanning electron microscopy. Indwelling time, encrustation, and stability of the stents in artificial urine solution was carried out up to 60 days of immersion. In vitro studies carried out with simulated urine demonstrated that the tubes present a high fluid uptake ability, about 1000{%}. Despite this, the materials are able to maintain their shape and do not present an extensive swelling behavior. The bioresorption profile was observed to be highly dependent on the composition of the stent and it can be tuned. Complete dissolution of the materials may occur between 14 and 60 days. Additionally, no encrustation was observed within the tested timeframe. The ability to resist bacterial adherence was evaluated with Gram-positive Staphylococcus aureus and two Gram-negatives Escherichia coli DH5 alpha and Klebsiella oxytoca. For K. oxytoca, no differences were observed in comparison with a commercial stent (Biosoft((R)) duo, Porges), although, for S. aureus all tested compositions had a higher inhibition of bacterial adhesion compared to the commercial stents. In case of E. coli, the addition of gelatin to the formulations reduced the bacterial adhesion in a highly significant manner compared to the commercial stents. The stents produced by the developed technology fulfill the requirements for ureteral stents and will contribute in the development of biocompatible and bioresorbable urinary stents.

Mendes, MJ, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi. "{Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids}." Nanotechnology. 26 (2015). Abstract

© 2015 IOP Publishing Ltd. The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.

Nunes, D., T. R. Calmeiro, S. Nandy, JV Pinto, A. Pimentel, P. Barquinha, P. A. Carvalho, J. C. Walmsley, E. Fortunato, and R. Martins. "{Charging effects and surface potential variations of Cu-based nanowires}." Thin Solid Films (2015): 1-9. AbstractWebsite

The presentwork reports charging effects and surface potential variations in pure copper, cuprous oxide and cu- pric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved throughmicrowave irradiation and cupric oxide nanowireswere obtained via furnace annealing in at- mospheric conditions. Structural characterization of the nanowireswas carried out byX-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the sub- strate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFMmeasurements in accordancewith their band gap energies. Thework functions(WF) of the Cu-based nano- wires, obtained by KPFM measurements, yieldedWFCuO N WFCu N WFCu2O

Aroso, Ivo M., Ana Rita C. Duarte, Ricardo R. Pires, João F. Mano, and Rui L. Reis. "{Cork processing with supercritical carbon dioxide: Impregnation and sorption studies}." Journal of Supercritical Fluids. 104 (2015): 251-258. AbstractWebsite

Abstract The present study relates to the use of supercritical carbon dioxide (SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}) to modify the properties of cork by incorporation of new molecules. The impact of SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}processing on the morphology and on the mechanical properties was found to be negligible.The impregnation of disperse blue 14 (blue dye) on cubic shaped cork samples of 5 mm occurs progressively,is dependent of the processing conditions and of the presence of lenticels and growth rings. The impregnation of the samples bulk was achieved with processing at 10 MPa and 313 K for 16 h. The solubility and sorption of SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater} in the cork matrix was measured using circular discs and the diffusion coefficients calculated to be on the order of 10{\textless}sup{\textgreater}-8{\textless}/sup{\textgreater} cm{\textless}sup{\textgreater}2{\textless}/sup{\textgreater}/s, the same order as for wood materials. This work demonstrates the feasibility of supercritical fluid technology to impart new features to cork, which may lead to innovative architectural, outdoor and industrial applications.

Aroso, I. M., R. Craveiro, Â. Rocha, M. Dionísio, S. Barreiros, R. L. Reis, A. Paiva, and A. R. C. Duarte. "{Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technology}." International Journal of Pharmaceutics. 492 (2015). Abstract

© 2015 Elsevier B.V. Abstract Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-Ï$μ$-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt{%}), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.

Kololuoma, Terho, Jaakko Leppäniemi, Himadri Majumdar, Rita Branquinho, Elena Herbei-Valcu, Viorica Musat, Rodrigo Martins, Elvira Fortunato, and Ari Alastalo. "{Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics}." J. Mater. Chem. C. 3 (2015): 1776-1786. AbstractWebsite

We report a sol-gel approach to fabricate aluminum-oxy-hydroxide (AlOOH) -based inks for gravure printing of high-dielectric-constant nanocomposite films. By reacting 3-glycidoxypropyl- trimethoxysilane (GPTS) with aluminum-oxide-hydroxide (AlOOH) nanoparticles under constant bead milling, inks suitable for gravure printing were obtained. The calculated relative dielectric constant based on measured capacitances and film thicknesses for the gravure-printed GPTS:AlOOH nanocomposite varied between 7 and 11 at a 10 kHz frequency. The dielectric constant depended on the mixing ratio of the composite and was found to follow the Maxwell-Garnett ternary-system mixing rule indicating presence of micro/nanopores that affect the electrical properties of the fabricated films. Increasing leakage current with increasing AlOOH content was observed. High leakage current was reduced by printing two-layer films. The double-layered gravure-coated films exhibited similar capacitance density but clearly lower leakage current and less electrical breakdowns in comparison to single-layered films having comparable film compositions and film thicknesses. The best composite yielded a capacitance density of 109 ± 2 pF/mm2 at the 10 kHz frequency and a leakage current density of 60 ± 20 µA/cm2 at 0.5 MV/cm electric field as a single layer. The calculated relative dielectric constant at the 10 kHz frequency for this composition was 11.2 ± 0.5. Introduction

Tobias, I., MJ Mendes, A. Boronat, E. Lopez, P. Garcia-Linares, I. Artacho, A. Marti, S. Silvestre, and A. Luque. "{HIT intermediate-band solar cells with self-assembled colloidal quantum dots and metal nanoparticles}." 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. 2015. Abstract
n/a
Barros, A. A., C. Oliveira, R. L. Reis, E. Lima, and A. R. C. Duarte. "{Ketoprofen-eluting biodegradable ureteral stents by CO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}impregnation: In vitro study}." International Journal of Pharmaceutics. 495 (2015). Abstract

© 2015 Elsevier B.V. Ureteral stents are indispensable tools in urologic practice. The main complications associated with ureteral stents are dislocation, infection, pain and encrustation. Biodegradable ureteral stents are one of the most attractive designs with the potential to eliminate several complications associated with the stenting procedure. In this work we hypothesize the impregnation of ketoprofen, by CO 2 -impregnation in a patented biodegradable ureteral stent previously developed in our group. The biodegradable ureteral stents with each formulation: alginate-based, gellan gum-based were impregnated with ketoprofen and the impregnation conditions tested were 100 bar, 2 h and three different temperatures (35 °C, 40°C and 50°C). The impregnation was confirmed by FTIR and DSC demonstrated the amorphization of the drug upon impregnation. The in vitro elution profile in artificial urine solution (AUS) during degradation of a biodegradable ureteral stent loaded with ketoprofen was evaluated. According to the kinetics results these systems have shown to be very promising for the release ketoprofen in the first 72 h, which is the necessary time for anti-inflammatory delivery after the surgical procedure. The in vitro release studied revealed an influence of the temperature on the impregnation yield, with a higher impregnation yield at 40°C. Higher yields were also obtained for gellan gum-based stents. The non-cytotoxicity characteristic of the developed ketoprofen-eluting biodegradable ureteral stents was evaluated in L929 cell line by MTS assay which demonstrated the feasibility of this product as a medical device.