Sousa, Diogo G., Carla Ferreira, and João M. Lourenço. "
Prevenção de Violações de Atomicidade usando Contractos."
Proceedings of INForum Simpósio de Informática. INForum 2013. Lisbon, Portugal: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2013. 190-201.
AbstractA programação concorrente obriga o programador a sincronizar os acessos concorrentes a regiões de memória partilhada, contudo esta abordagem não é suficiente para evitar todas as anomalias que podem ocorrer num cenário concorrente. Executar uma sequência de operações atómicas pode causar violações de atomicidade se existir uma correlação entre essas operações, devendo o programador garantir que toda a sequência de operações é executada atomicamente. Este problema é especialmente comum quando se usam operações de pacotes ou módulos de terceiros, pois o programador pode identificar incorretamente o âmbito das regiões de código que precisam de ser atómicas para garantir o correto comportamento do programa. Para evitar este problema o programador do módulo pode criar um contrato que especifica quais as sequências de operações do módulo que devem ser sempre executadas de forma atómica. Este trabalho apresenta uma análise estática para verificação destes contratos.
Amado, M. P., and F. Poggi Planning for solar smart cities. CISBAT 13. Lausanne, CH: the Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne ISBN: 978-2-8399-1280-8, 2013.
Ramos, Tania Rodrigues Pereira, Maria Isabel Gomes, and Ana Paula Barbosa-póvoa. "
Planning Waste Cooking Oil Collection Systems."
Waste Management. 33.8 (2013): 1691-1703.
AbstractThis research has been motivated by a real-life problem of a waste cooking oil collection system characterized by the existence of multiple depots with an outsourced vehicle fleet, where the collection routes have to be plan. The routing problem addressed allows open routes between depots, i.e., all routes start at one depot but can end at the same or at a different one, depending on what minimizes the objective function considered. Such problem is referred as a Multi-Depot Vehicle Routing Problem with Mixed Closed and Open Inter-Depot Routes and is, in this paper, modeled through a Mixed Integer Linear Programming (MILP) formulation where capacity and duration constraints are taken into account. The model developed is applied to the real case study providing, as final results, the vehicle routes planning where a decrease of 13% on mileage and 11% on fleet hiring cost are achieved, when comparing with the current company solution.
Salminen, J., J. Dinis, and O. Mateus Preliminary magnetostratigraphy for Jurassic/Cretaceous transition in Porto da Calada, Portugal. In: Veikkolainen, T., Suhonen, K., Näränen, J., Kauristie, K., and Kaasalainen, S. (eds.). XXVI Geofysiikan päivät,. May 21-22 2013 in Helsinki, 2013.
Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "
Pseudodifferential operators on variable Lebesgue spaces."
Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. Operator Theory: Advances and Applications, 228. Eds. Yuri I. Karlovich, Luigi Rodino, Bernd Silbermann, and Ilya M. Spitkovsky. Basel: Birkhäuser, 2013. 173-183.
AbstractLet \(\mathcal{M}(\mathbb{R}^n)\) be the class of bounded away from one and infinity functions \(p:\mathbb{R}^n\to[1,\infty]\) such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n)\). We show that if \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\), then the pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on the variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n)\) provided that \(p\in\mathcal{M}(\mathbb{R}^n)\). Let \(\mathcal{M}^*(\mathbb{R}^n)\) be the class of variable exponents \(p\in\mathcal{M}(\mathbb{R}^n)\) represented as \(1/p(x)=\theta/p_0+(1-\theta)/p_1(x)\) where \(p_0\in(1,\infty)\), \(\theta\in(0,1)\), and \(p_1\in\mathcal{M}(\mathbb{R}^n)\). We prove that if \(a\in S_{1,0}^0\) slowly oscillates at infinity in the first variable, then the condition \[ \lim_{R\to\infty}\inf_{|x|+|\xi|\ge R}|a(x,\xi)|>0 \] is sufficient for the Fredholmness of \(\operatorname{Op}(a)\) on \(L^{p(\cdot)}(\mathbb{R}^n)\) whenever \(p\in\mathcal{M}^*(\mathbb{R}^n)\). Both theorems generalize pioneering results by Rabinovich and Samko [RS08] obtained for globally log-Hölder continuous exponents \(p\), constituting a proper subset of \(\mathcal{M}^*(\mathbb{R}^n)\).