p/n junction depth control using amorphous silicon as a low temperature dopant source

Citation:
Lavareda, G., A. de Calheiros Velozo, C. Nunes de Carvalho, and A. Amaral. "p/n junction depth control using amorphous silicon as a low temperature dopant source." THIN SOLID FILMS 543 (2013): 122-124.

Abstract:

Phosphorus-doped amorphous silicon thin films, deposited at low temperatures by Plasma Enhanced Chemical Vapour Deposition were used as a dopant source on p-type c-Si substrates. A careful step of dehydrogenation was done in order to maintain the a-Si thin-film integrity. Subsequently, a fine-controlled drive-in of dopant, from the amorphous layer to the crystalline wafer was done, to form the p/n junction, using different time periods and temperatures. Dopant profiling in c-Si wafers as well as dopant concentration in a-Si: H films prior to diffusion, both measured by Secondary Ion Mass Spectrometry, are presented. Junction depths obtained are in the range of 98 nm to 2.4 mu m and surface concentrations are in the range of 1.1 x 10(21) to 4.3 x 10(20) at/cm(3). A dual diffusion mechanism explains the ``kink-and-tail{''} shape found for dopant profile. (C) 2013 Elsevier B.V. All rights reserved.

Notes:

4th International Conference on Nanostructures Self-Assembly (NANOSEA), ITALY, JUN 25-29, 2012