Mateus, O. "
New dinosaur and pterosaur tracksites from the Late Jurassic of Portugal." Chongqing, China: 2012 Abstract Book of Qijiang International Dinosaur Tracks Symposium, 2012.
AbstractPortugal is rich on dinosaur remains (bones, eggs, and tracks) from Early Jurassic to Late
Cretaceous ages, but mainly from the Late Jurassic, in which dozen of tracksites have been reported.
Here are reported new or poorly known track localities:
1) Five tracksites share the preservation substrate (marine carbonated limestone), age (late Jurassic), geographic area (Leiria district of Portugal), kind of preservation (true tracks), and completeness (trackways of multiple individuals):
i) Praia dos Salgados includes eight trackways, mostly ornithopods and theropods, and one wide gauge sauropod, made in very soft sediment; some preserve the hallux impression.
ii) Serra de Mangues is mostly covered with vegetation but seems to include dozens of tracks comprising theropods, thyreophorans, ornithopods and sauropods.
iii) Sobral da Lagoa (Pedreira do Rio Real) include six trackways but poorly preserved;
and
iv) Serra de Bouro that preserves four sauropod trackways in one single layer.
v) Pedrógão, preserved, at least, one theropod trackway and several isolated tracks of
theropods and ornithopods were found in different layers in the Early Oxfordian.
2) The locality in Praia de Porto das Barcas yielded natural casts of stegosaur tracks
(including pes print with skin impression) and a very large sauropod pes print with about
1.2 m long pes.
3) A new pterosaur tracksite was found in the Late Jurassic of Peralta, Lourinhã (Sobral Member, Lourinhã Fm.; Late Kimmeridgian/Early Tithonian). More than 220 manus and pes tracks have been collected in about five square meters, all ascribed to pterosaurs. The tracks were produced in a thin mud layer that has been covered by sand which preserved them as sandstone mould infill (natural casts). The manus of the largest specimens is 13 cm wide and 5.5 cm long and the pes measures 14.5 cm in length and 9 cm in width. This shows the occurrence of very large pterosaurs in the Late Jurassic. Other pterosaur tracksites in the Late Jurassic of Portugal are: Porto das Barcas (Lourinhã Municipality), South of Consolação (Peniche Municipality), and Zambujal de Baixo (Sesimbra Municipality).
Hendrickx, C., R. Araújo, and O. Mateus. "
The nonavian theropod quadrate: systematics usefulness, major trends and phylogenetic morphometrics analysis." Journal of Vertebrate Paleontology, Program and Abstracts, 2012, p.110. ISSN 1937-2809 , 2012.
Abstract
The quadrate in nonavian theropods is incredibly diverse morphologically; however this morphological disparity has been underestimated for taxonomic purposes. The quadrate topological homologies and anatomy, as well as the terminology, among nonavian theropod clades are reviewed. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis using 3 morphometric characters, a total of 28 landmarks coded for 23 taxa, as well as a cladistic analysis using 115 discrete quadrate-related characters coded for 43 taxa. The cladistic analysis provides a fully resolved tree mirroring the current classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal. Several unambiguous synapomorphies support nonavian theropod relationships and the resulting consensus tree allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauridae, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Neotetanurae, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Allosauroidea and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.