O Portal do docente é uma ferramenta de apoio que permite a cada Professor da FCT NOVA criar autonomamente a sua página pessoal e aí inserir o seu curriculum, divulgar artigos científicos, apresentar as disciplinas leccionadas, partilhar feeds, etc.
Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.
A novel flexible tripodal ligand derived from 3-methylindole, ("InTREN" L), and its mononuclear Zn(II), Cu(II), Ni(II), Hg(II) and Pd(II) complexes are described. All compounds gave analytically pure solid samples. Characterisation of the compounds was accomplished by (1)H NMR, IR and absorption spectroscopies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and elemental analysis and their geometry optimized using density functional theory (DFT).Time-dependent-density functional theory (TD-DFT) calculations have been used to assign the lowest energy absorption bands of the free ligand and the Zn(II) complex. The system is a very good candidate for in situ recognition/coordination effects by MALDI-TOF-MS spectrometry and absorption spectroscopy. The presence of three indole groups in InTREN opens up the possibility to synthesize new three-dimensional self-assembly supramolecular structures. (C) 2008 Elsevier B.V. All rights reserved.
Stegosaurian dinosaurs have a quadrupedal stance, short forelimbs, short necks, and are generally considered to be low browsers. A new stegosaur, Miragaia longicollum gen. et sp. nov., from the Late Jurassic of Portugal, has a neck comprising at least 17 cervical vertebrae. This is eight additional cervical vertebrae when compared with the ancestral condition seen in basal ornithischians such as Scutellosaurus.
Miragaia has a higher cervical count than most of the iconically long-necked sauropod dinosaurs. Long neck length has been achieved by ‘cervicalization’ of anterior dorsal vertebrae and probable lengthening of centra. All these anatomical features are evolutionarily convergent with those exhibited in the necks of
sauropod dinosaurs. Miragaia longicollum is based upon a partial articulated skeleton, and includes the only known cranial remains from any European stegosaur. A well-resolved phylogeny supports a new clade that unites Miragaia and Dacentrurus as the sister group to Stegosaurus; this new topology challenges the common view of Dacentrurus as a basal stegosaur.
General vertebrate paleontological techniques that have been used in the Museum of Lourinhã (Portugal) are presented here, in particular those applied to a stegosaurian dinosaur skeleton, Miragaia longicollum. A monolith jacket technique using polyurethane foam and plaster is presented. Mechanical preparation
techniques combining the use of an electric grinder and airscribes proved effective during the initial phases of preparation on well-preserved bone embedded in hard matrix. We also present a technique to mould monoliths in the early stages of preparation, creating a thin silicone rubber mould in several contiguous
parts. To mould and cast monoliths before removing individual bones has proven valuable for the preservation of taphonomic data and for display purposes. Polyurethane resin combined with plaster is useful for small casts, while polyester resin applied in four layers is the preferred technique for larger casts.
The four layers are composed of: a first thin layer of polyester resin with bone colour; followed by another layer of polyester resin of sediment colour and containing glass microspheres to make it thicker. The third layer is composed of fibre glass chopped strands, and the fourth is composed of fibre glass mats embedded
in plain polyester resin. 3D scanning and digitization techniques where tested for the storage of osteological information of individual bones and proved very promising.
Fortunato, E., Nuno Correia, Pedro Barquinha, Cláudia Costa, Lu\'ıs Pereira, Gonçalo Gonçalves, and Rodrigo Martins. "{Paper field effect transistor}." Eds. Ferechteh H. Teherani, Cole W. Litton, and David J. Rogers. Vol. 7217. 2009. 72170K–11. Abstract