Souza, Luiz A. S., Carlos Chastre, Válter J. G. LUCIO, and Sueli T. M. Souza. "
Comportamento Dinâmico de Torres Treliçadas em Concreto Armado para Turbinas Eólicas Offshore."
Congresso de Métodos Numéricos em Engenharia. Lisboa, Portugal 2015. 18.
AbstractA demanda de energia, faz com que o homem esteja sempre a procura de novas soluções para a sua produção. Uma opção é a energia eólica, por se tratar de uma energia limpa, renovável e inesgotável. Para se evitar a ocupação das terras férteis, é natural a busca de soluções no mar. Portanto, neste trabalho é estudado o comportamento estrutural dinâmico de uma torre treliçada em concreto armado pós-tensionado por tirantes externos idealizada para uso offshore com a finalidade de suporte para turbinas eólicas de eixo horizontal. A torre está sujeita às ações gravitacionais, aerodinâmicas e hidrodinâmicas. Para considerar estas ações desenvolveu-se um código computacional específico usando a linguagem MATLAB. É proposto um modelo simplificado para análise bi-dimensional, utilizando-se elementos de pórtico plano com a finalidade de contornar as dificuldades de uma análise tridimensional. Embora específico para este tipo de torre, o codigo permite variar geometrias, carregamentos e alterações do nível do mar. Nas cargas aerodinâmicas élevado em conta o espectro de Von Karman. As cargas hidrodinâmicas são avaliadas pela equação de Morison. As cargas nodais equivalentes são determinadas por integração ao longo do elemento estrutural de acordo com o proposto por Souza. Os tirantes pós-tensionados são monitorados para não sofrerem esforços de compressão. A análise é realizada no domínio do tempo utilizando-se o algoritmo de integração de Newmark.. Através dos procedimentos adotados foi possível obter resultados para as freqüências, deslocamentose esforços, que se mostraram coerentes com os obtidos por modelos tri dimensionais mais complexos. O código desenvolvido permitiu a análise de forma simples, eficiente e confiável de torres treliçadas de concreto armado.
Ameller, David, Xavier Franch, Cristina Gómez, João Araújo, Richard Berntsson Svensson, Stefan Biffl, Jordi Cabot, Vittorio Cortellessa, Maya Daneva, Daniel Mendez Fernández, Ana Moreira, Henry Muccini, Antonio Vallecillo, Manuel Wimmer, Vasco Amaral, Hugo Brunelière, Loli Burgueño, Miguel Goulão, Bernhard Schätz, and Sabine Teufl. "
Handling Non-Functional Requirements in Model-Driven Development: An Ongoing Industrial Survey."
23rd International Conference on Requirements Engineering (RE'15) - RE: Next! Ottawa, Canada: IEEE Computer Society, 2015.
Souza, Luiz A. S., Carlos Chastre, Válter J. G. LUCIO, and Sueli T. M. Souza. "
Modelo simplificado para análise do comportamento dinâmico de torres treliçadas em concreto armado para turbinas eólicas offshore."
CILAMCE 2015 - XXXVI Ibero-Latin American Congress on Computational Methods in Engineering. Rio de Janeiro, Brasil 2015. 16p.
AbstractEste trabalho apresenta o desenvolvimento de um software para análise de torres treliçadas em concreto armado, pós-tensionada por tirantes externos, com a finalidade de suporte para turbinas eólicas de eixo horizontal, em ambiente offshore. A torre está sujeita às ações gravitacionais, aerodinâmicas, hidrodinâmicas. Desenvolveu-se um código computacional, em linguagem MATLAB, específico para este tipo de torre. As dificuldades de uma análise tridimensional mais complexa foram reduzidas propondo-se um modelo simplificado bi-dimensional utilizando-se elementos de pórtico plano. As cargas de vento são variadas segundo o espectro de von Karman. Para as ondas marítimas e correntes são implementados o espectro de Pierson-Moskowitz e o de JONSWAP. As cargas hidrodinâmicas são avaliadas pela equação de Morison. Estas cargas são integradas ao longo dos elementos estruturais e transformadas em cargas nodais equivalentes, de acordo com o proposto por Souza. A análise é realizada no domínio do tempo com algoritmo de Newmark. Este software, por ser específico para este tipo de torre, possui facilidades na introdução de dados e na modelagem da estrutura. Com estas estratégias o modelo apresentou bons resultados para a avaliação de cargas, cálculo de freqüências naturais, resposta de deslocamentos, esforços e reações.
Caeiro, Frederico, Ana P. Martins, and Inês J. Sequeira. "
Finite sample behaviour of classical and quantile regression estimators for the Pareto distribution."
Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, ICNAAM 2014. Vol. 1648. American Institute of Physics Inc., 2015.
AbstractThe Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.The Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.
Caeiro, Frederico, and Dora Susana Raposo Prata Gomes. "
Adaptive estimation of a tail shape second order parameter."
International Conference of Computational Methods in Sciences and Engineering 2015 (ICCMSE 2015). AIP Conference Proceedings. American Institute of Physics Inc., 2015.
AbstractIn Statistics of Extremes, the tail shape second order parameter is a relevant parameter whenever we want to improve the estimation of first order parameters. We shall consider two semi-parametric estimators of the shape second order parameter, parameterized with a tuning parameter. We provide a Monte Carlo comparative simulation study of several algorithms for the choice of such tuning parameter and for an adaptive estimation of the shape second order parameter.In Statistics of Extremes, the tail shape second order parameter is a relevant parameter whenever we want to improve the estimation of first order parameters. We shall consider two semi-parametric estimators of the shape second order parameter, parameterized with a tuning parameter. We provide a Monte Carlo comparative simulation study of several algorithms for the choice of such tuning parameter and for an adaptive estimation of the shape second order parameter.
Caeiro, Frederico, and Ivette M. Gomes. "
Bias reduction in the estimation of a shape second-order parameter of a heavy-tailed model."
Journal Of Statistical Computation And SimulationJournal Of Statistical Computation And Simulation. 85.17 (2015): 3405-3419.
AbstractIn extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.
Mateus, Ayana Maria Xavier Furtado, and Frederico Almeida Gião Gonçalves Caeiro. "
The difference-sign randomness test."
NTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015. Vol. 1702. AIP Conference Proceedings, 1702. American Institute of Physics Inc., 2015.
AbstractIn this paper we review the properties of the difference-sign randomness test. First we analyse the exact andasymptotic distribution of the test statistic and provide a table with values for the exact distribution function, for samples ofsize n ≤ 32. Then, we also present several moments of the statistic test, under the null hypothesis of randomness and underthe hypothesis of the existence of a linear trend. Finally, we present an illustration of the test difference-sign to a real data set.In this paper we review the properties of the difference-sign randomness test. First we analyse the exact andasymptotic distribution of the test statistic and provide a table with values for the exact distribution function, for samples ofsize n ≤ 32. Then, we also present several moments of the statistic test, under the null hypothesis of randomness and underthe hypothesis of the existence of a linear trend. Finally, we present an illustration of the test difference-sign to a real data set.
Caeiro, Frederico Almeida Gião Gonçalves, Ayana Maria Xavier Furtado Mateus, and Luís Pedro Carneiro Ramos. "
Extreme value analysis of the sea levels in Venice."
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014. AIP Conference Proceedings. American Institute of Physics Inc., 2015.
AbstractThe number of floods in the city of Venice has increased substantially in the last decades and can be explained bythe sea level rise and land subsidence. Using Statistics of Extremes we shall model the extreme behaviour of the sea level inVenice and quantify risk through the estimation of important parameters such as return periods of high levels.The number of floods in the city of Venice has increased substantially in the last decades and can be explained bythe sea level rise and land subsidence. Using Statistics of Extremes we shall model the extreme behaviour of the sea level inVenice and quantify risk through the estimation of important parameters such as return periods of high levels.
Caeiro, Frederico, and Dora Susana Raposo Prata Gomes. "
A log probability weighted moment estimator of extreme quantiles."
Theory and Practice of Risk Assessment - ICRA5 2013. Vol. 136. Springer New York LLC, 2015. 293-303.
AbstractIn this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.