Lanca, M. C., and J. Marat-Mendes,
"Dielectric breakdown statistics of polyethylene for progressively-censored data",
Advanced Materials Forum Ii, vol. 455-456, pp. 602-605, 2004.
AbstractThe dielectric breakdown of thin films of low-density polyethylene (LDPE) electrically aged in an aqueous solution of NaCl under an AC electric field was investigated. A two-parameter Weibull function was used for the dielectric breakdown time to failure. The probability of failure for a sample was obtained by the White method for progressively censored data. Samples aged at different temperatures were compared. The results show that initially the samples aged at lower temperature (approximate to25degreesC) are more prone to fail, while those aged at higher temperature (50degreesC) fail at longer times. This was attributed to a competition between oxidation and diffusion.
Lanca, M. C., and J. Marat-Mendes,
"Dielectric breakdown statistics of polyethylene for progressively-censored data",
Advanced Materials Forum Ii, vol. 455-456, pp. 602-605, 2004.
AbstractThe dielectric breakdown of thin films of low-density polyethylene (LDPE) electrically aged in an aqueous solution of NaCl under an AC electric field was investigated. A two-parameter Weibull function was used for the dielectric breakdown time to failure. The probability of failure for a sample was obtained by the White method for progressively censored data. Samples aged at different temperatures were compared. The results show that initially the samples aged at lower temperature (approximate to25degreesC) are more prone to fail, while those aged at higher temperature (50degreesC) fail at longer times. This was attributed to a competition between oxidation and diffusion.
Lanca, M. C., C. J. Dias, D. K. Dasgupta, and J. Marat-Mendes,
"Dielectric properties of electrically aged low density polyethylene",
Advanced Materials Forum I, vol. 230-2, pp. 396-399, 2002.
AbstractLow density polyethylene (LDPE) films kept in a sodium chloride aqueous solution, were aged under a high AC electrical field. The films were prepared from press moulding of LDPE pellets with small amounts of antioxidants. The dielectric spectra at 30 degreesC in the range of 10(-5) Hz to 105 Hz were obtained prior and after ageing. Three different experimental techniques were used to obtain the full spectrum. For the low frequency (LF) region (10(-5) Hz to 10(-1) Hz) the time domain technique was used (charge and discharge currents were also measured). The measuring device used for the 10(-1) Hz to 10(1) Hz medium frequency (MF) region was a lock-in amplifier. While for the high frequency (HF), 10(-1) Hz to 10(5) Hz, RLC bridge measurements were performed. Differences can be seen between aged and unaged PE. The region showing less changes with ageing is the MF region where the peak of the unaged samples seems to become less defined with ageing time. This peak is probably due to additives and impurities (such as antioxidants) that will tend to slowly diffuse out with time. The LF peak is a broad peak related to localised space charge injection driven by the electric field. This peak increases in an earlier stage of ageing decreasing afterwards possibly when the polymer becomes more conductive. Finally the HF shows the beginning of a peak due to gamma and beta transitions. The later is related to dipolar rotation of carbonyl groups in amorphous polymer regions, while the former is associated to crankshaft motions in the main polymer chain. This peak decreases with ageing disappearing for the most aged samples. This could also be explained if the sample becomes more conductive.
Lanca, M. C., C. J. Dias, D. K. Dasgupta, and J. Marat-Mendes,
"Dielectric properties of electrically aged low density polyethylene",
Advanced Materials Forum I, vol. 230-2, pp. 396-399, 2002.
AbstractLow density polyethylene (LDPE) films kept in a sodium chloride aqueous solution, were aged under a high AC electrical field. The films were prepared from press moulding of LDPE pellets with small amounts of antioxidants. The dielectric spectra at 30 degreesC in the range of 10(-5) Hz to 105 Hz were obtained prior and after ageing. Three different experimental techniques were used to obtain the full spectrum. For the low frequency (LF) region (10(-5) Hz to 10(-1) Hz) the time domain technique was used (charge and discharge currents were also measured). The measuring device used for the 10(-1) Hz to 10(1) Hz medium frequency (MF) region was a lock-in amplifier. While for the high frequency (HF), 10(-1) Hz to 10(5) Hz, RLC bridge measurements were performed. Differences can be seen between aged and unaged PE. The region showing less changes with ageing is the MF region where the peak of the unaged samples seems to become less defined with ageing time. This peak is probably due to additives and impurities (such as antioxidants) that will tend to slowly diffuse out with time. The LF peak is a broad peak related to localised space charge injection driven by the electric field. This peak increases in an earlier stage of ageing decreasing afterwards possibly when the polymer becomes more conductive. Finally the HF shows the beginning of a peak due to gamma and beta transitions. The later is related to dipolar rotation of carbonyl groups in amorphous polymer regions, while the former is associated to crankshaft motions in the main polymer chain. This peak decreases with ageing disappearing for the most aged samples. This could also be explained if the sample becomes more conductive.
Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, P. Inacio, and J. N. Marat-Mendes,
"Electrical Method to Study the Weak Molecular Movements at Nanometric Scale in Low Mobility Materials",
Advanced Materials Forum V, Pt 1 and 2, vol. 636-637, pp. 430-436, 2010.
AbstractFor the characterization of the new materials and for a better understanding of the connection between structure and properties it is necessary to use more and more sensible methods to study molecular movement at nanometric scale. This paper presents the experimental basis for a new electrical method to study the fine molecular movements at nanometric scale in dielectric materials. The method will be applied for polar and non-polar materials characterization. Traditionally, the electrical methods used to study the molecular movements are based on the movements of the dipoles that are parts of the molecules. We have proposed recently a combined protocol to analyze charge injection/extraction, transport, trapping and detrapping in low mobility materials. The experimental results demonstrate that the method can be used to obtain a complex thermogram which contains information about all molecular movements, even at nanoscopic level. Actually during the charging process we are decorating the structure with space charge and during the subsequent heating we are observing an apparent peak and the genuine peaks that are related to charge de-trapping determined by the molecular movement. The method is very sensitive, very selective and allows to determinate the parameters for local and collective molecular movements, including the temperature dependence of the activation energy and the relaxation time.
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, and J. N. Marat-Mendes,
"Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface",
Advanced Materials Forum V, Pt 1 and 2, vol. 636-637, pp. 437-443, 2010.
AbstractThe isothermal charging current and the isothermal discharging current in low mobility materials are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current there is a current related to charge injection or extraction at the metal-dielectric interface and a reverse current related to the charge trapped into the shallow superficial or near superficial states of the dielectric and which can move at the interface in the opposite way that occurring during injection. Two important parameters can be determined (i) the highest value of the relaxation time for the polarization mechanisms which are involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface. The experimental data demonstrate that there is no threshold field for electron injection/extraction at a metal-dielectric interface.
Lanca, M. C., E. R. Neagu, L. A. Dissado, and J. Marat-Mendes,
"Space charge studies in XLPE from power cables using combined isothermal ans thermostimulated current measurements",
Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, pp. 935-939, 2006.
AbstractCross-linked polyethylene (XLPE) peelings from aged power cables from three different sources were studied using a combined procedure of isothermal and thermo-stimulated current measurements. Different parameters, such as electric field, temperature, charging/discharging times, can be selected in order to make an analysis of the space charge characteristics (such as, relaxation times and activation energies). Three different cables peelings were analyzed: A - electrically aged in the laboratory at high temperature, B - service aged for 18 years and C - thermally aged in the laboratory at high temperature. The results were compared for the different types of samples and also with previous results on laboratory aged and produced films of low-density polyethylene (LDPE) and XLPE.
Lanca, M. C., I. Cunha, J. P. Marques, E. R. Neagu, L. Gil, C. J. Dias, and J. N. Marat-Mendes,
"Water Content Control To Improve Space Charge Storage in a Cork Derivative",
Advanced Materials Forum Vi, Pts 1 and 2, vol. 730-732, pp. 395-400, 2013.
Abstractn/a