Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
AS, P., B. JPMR, N. E, M. - M. JN, and L. MCH, Electrical characterization of biphasic ceramics used in hard tissue replacement, , Coimbra Portugal, pp. 217, 2013. Abstract

Hydroxyapatite [Hap; Ca10(PO4)6(OH)2) and b-tricalcium phosphate [b-TCP; Ca3(PO4)2] are biocompatible calcium phosphates used in skeletal surgery. The natural HAp is one of the main components of bone and, as a synthetic material, has been widely used for bone replacement presenting good bioactivity. Nevertheless synthetic HAp presents a slow in vivo degradation rate which is disadvantageous for bone’s reparative process. b-TCP has also good osteogenic characteristics presenting the ability to form strong bonds with the bone however, its degradation rate is too fast [1]. Therefore, a composite combining these two ceramics is valuable as it exhibits a suitable degradation rate. Because of the piezoelectric properties of bone it is known that electrical polarization of calcium phosphates can enhance the bioactivity and biointegration of implants [2]. Previous studies have already showed that HAp/b-TCP ceramics can be electrically polarized and that electrical polarization enhances osteogenesis in the early stage of the implantation process. However further studies are required to understand, optimize and improve the polarization technique [1]. In this work a commercial biphasic ceramic powders were pressed in a mold at 200 MPa to produce disc shaped samples. Afterwards, the samples were sintered at temperatures from 950ºC to 1150ºC and the influence of the heat treatment in the electrical polarization and subsequent bioactivity was investigated. The samples were polarized under a high DC electric field at relatively lower temperature (200oC) compared to previous studies and the stability of polarization was tested using TSDC (thermally depolarization currents) measurements. It was studied the influence of the water, initially present in the material, in the total charge deposited during polarization, its stability and its relation with heat treatment after pressing. The influence of the addition of b-TCP on sample’s stored charge was also evaluated. Finally bioactivity tests in a simulated body fluid solution were made taking into account the signal of the charge in each surface of the disc samples so that the results could be compared to previous ones.

2011
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite, , pp. 55-56, Jan, 2011. Abstract
n/a
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 14th International Symposium on Electrets, 2011. Abstract
n/a
2008
Lanca, M. C., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. Abstract

Lately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.

Lanca, C. M., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. Abstract

Lately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.

Lanca, C. M., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, J. Marat-Mendes, A. T. Marques, A. F. Silva, A. P. M. Baptista, C. Sa, F. J. L. A. Alves, L. F. Malheiros, and M. Vieira, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. Abstract
n/a
Neagu, R. M., E. R. Neagu, M. C. Lanca, and J. N. Marat-Mendes, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract

The thermally stimulated discharge current (TSDC.) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. flee experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10 to 20 K above the poling temperature. Measurements of the FTSDC in a wide temperature range demonstrate the existence of an apparent peak at a temperature T-ma shifted with about 10 to 30 K above the charging temperature T-c. The shift of T-ma with respect to T-c depends on the experimental conditions. The peak width at the half maximum intensity decreases as T-c increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and de-trapping processes are affected. Our results demonstrate that there is a strong similarity between the elementary peaks obtained by the two methods, and the current is mainly determined by SC de-trapping. Even the best elementary peaks are not fitted very well by the analytical equation, indicating that the hypothesis behind this equation have to be reconsidered.

Neagu, R. M., E. R. Neagu, C. M. Lanca, and J. N. Marat-Mendes, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract

The thermally stimulated discharge current (TSDC.) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. flee experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10 to 20 K above the poling temperature. Measurements of the FTSDC in a wide temperature range demonstrate the existence of an apparent peak at a temperature T-ma shifted with about 10 to 30 K above the charging temperature T-c. The shift of T-ma with respect to T-c depends on the experimental conditions. The peak width at the half maximum intensity decreases as T-c increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and de-trapping processes are affected. Our results demonstrate that there is a strong similarity between the elementary peaks obtained by the two methods, and the current is mainly determined by SC de-trapping. Even the best elementary peaks are not fitted very well by the analytical equation, indicating that the hypothesis behind this equation have to be reconsidered.

Neagu, R. M., E. R. Neagu, C. M. Lanca, J. N. Marat-Mendes, A. T. Marques, A. F. Silva, A. P. M. Baptista, C. Sa, F. J. L. A. Alves, L. F. Malheiros, and M. Vieira, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract
n/a
2007
MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, pp. 4462-4466, Jan, 2007. AbstractWebsite
n/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).

MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing.