AS, P., B. JPMR, N. E, M. - M. JN, and L. MCH,
Electrical characterization of biphasic ceramics used in hard tissue replacement,
, Coimbra Portugal, pp. 217, 2013.
AbstractHydroxyapatite [Hap; Ca10(PO4)6(OH)2) and b-tricalcium phosphate [b-TCP; Ca3(PO4)2] are biocompatible calcium phosphates used in skeletal surgery. The natural HAp is one of the main components of bone and, as a synthetic material, has been widely used for bone replacement presenting good bioactivity. Nevertheless synthetic HAp presents a slow in vivo degradation rate which is disadvantageous for bone’s reparative process. b-TCP has also good osteogenic characteristics presenting the ability to form strong bonds with the bone however, its degradation rate is too fast [1]. Therefore, a composite combining these two ceramics is valuable as it exhibits a suitable degradation rate. Because of the piezoelectric properties of bone it is known that electrical polarization of calcium phosphates can enhance the bioactivity and biointegration of implants [2]. Previous studies have already showed that HAp/b-TCP ceramics can be electrically polarized and that electrical polarization enhances osteogenesis in the early stage of the implantation process. However further studies are required to understand, optimize and improve the polarization technique [1]. In this work a commercial biphasic ceramic powders were pressed in a mold at 200 MPa to produce disc shaped samples. Afterwards, the samples were sintered at temperatures from 950ºC to 1150ºC and the influence of the heat treatment in the electrical polarization and subsequent bioactivity was investigated. The samples were polarized under a high DC electric field at relatively lower temperature (200oC) compared to previous studies and the stability of polarization was tested using TSDC (thermally depolarization currents) measurements. It was studied the influence of the water, initially present in the material, in the total charge deposited during polarization, its stability and its relation with heat treatment after pressing. The influence of the addition of b-TCP on sample’s stored charge was also evaluated. Finally bioactivity tests in a simulated body fluid solution were made taking into account the signal of the charge in each surface of the disc samples so that the results could be compared to previous ones.
Lanca, M. C., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes,
"Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite",
Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008.
AbstractLately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.
Lanca, C. M., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes,
"Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite",
Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008.
AbstractLately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.
Lanca, C. M., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, J. Marat-Mendes, A. T. Marques, A. F. Silva, A. P. M. Baptista, C. Sa, F. J. L. A. Alves, L. F. Malheiros, and M. Vieira,
"Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite",
Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008.
Abstractn/a