Recent Publications

Export 241 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Phys. Rev. A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Physical Review A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Phys. Rev. A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Physical Review A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

Amaro, Pedro, Filippo Fratini, Laleh Safari, Jorge Machado, Mauro Guerra, Paul Indelicato, and Jose Paulo Santos. "Relativistic evaluation of the two-photon decay of the metastable 1s22s2p 3P0 state in berylliumlike ions with an effective-potential model." Physical Review A 93 (2016): 032502-8. AbstractWebsite

The two-photon $1{s}^{2}2s2p\phantom{\rule{0.16em}{0ex}}{}^{3}{P}_{0}\ensuremath{\rightarrow}1{s}^{2}{s}^{2}\phantom{\rule{0.16em}{0ex}}{}^{1}{S}_{0}$ transition in berylliumlike ions is investigated theoretically within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden $E1M1$ decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single-configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a fully relativistic $jj$-coupling calculation, we find a decrease of the decay rate by two orders of magnitude compared to nonrelativistic $LS$-coupling calculations, for the selected heavy ions.

Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite
Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite

Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

Guerra, M., P. Amaro, J. P. Santos, and P. Indelicato. "Relativistic calculations of screening parameters and atomic radii of neutral atoms." Atomic Data and Nuclear Data Tables 117-118 (2017): 439-457. AbstractWebsite

Atomic Data and Nuclear Data Tables, 117-118 (2017) 439-457. doi:10.1016/j.adt.2017.01.001

Sampaio, J. M., T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of M-shell photoionization and X-ray production cross-sections for Hg at 5.96 keV excitation energy." Radiation Physics and Chemistry 107 (2014): 36. AbstractWebsite

In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at incident photon energy of 5.96 keV (low.

Sampaio, J. M., T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of M-shell photoionization and X-ray production cross-sections for Hg at 5.96 keV excitation energy." Radiation Physics and Chemistry 107 (2015): 36. AbstractWebsite

In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at incident photon energy of 5.96 keV (low.

Sampaio, J. M., T. I. Madeira, M. Guerra, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo." Journal of Quantitative Spectroscopy and Radiative Transfer 182 (2016): 87-93. AbstractWebsite

Journal of Quantitative Spectroscopy and Radiative Transfer, 182 + (2016) 87-93. doi:10.1016/j.jqsrt.2016.05.012

Sampaio, J. M., M. Guerra, T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of atomic parameters in Ununoctium." Journal of Physics: Conference Series 635 (2015): 092095-2. AbstractWebsite
n/a
Indelicato, P., E. Lindroth, T. Beier, J. Bieron, A. M. Costa, I. Lindgren, J. P. Marques, A. M. Martenson-Pendrill, M. C. Martins, M. A. Ourdane, F. Parente, P. Patté, G. C. Rodrigues, S. Salomonson, and J. P. Santos. "Relativistic Calculations for Trapped Ions." Hyperfine Interactions 132 (2001): 347-361. AbstractWebsite

We present recent results in the field of total binding energy calculations, Landщ factors, quantum electrodynamics corrections and lifetime that are of interest for ion traps and ion sources. We describe in detail MCDF and RMBPT calculation of ionic binding energies, which are needed for the determination of atomic masses from highly charged ion measurements. We also show new results concerning Landщ factor in 3-electron ions. Finally we describe how relativistic calculations can help understand the physics of heavy ion production ion sources.

Martins, M. C., A. M. Costa, J. P. Santos, F. Parente, and P. Indelicato. "Relativistic calculation of two-electron one-photon and hypersatellite transition energies for 12<=Z<=30 elements." Journal of Physics B: Atomic and Molecular Physics 37 (2004): 3785-3795. AbstractWebsite

Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac–Fock model. The transition energies of competing processes, the Ka hypersatellites, were also computed. The results are compared with experiment and to other theoretical calculations.

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13<=Z<=80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite
Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13 ≤ Z ≤ 80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite

Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.Al_Sc_Mg_Ti

Madeira, T. I., J. M. Sampaio, M. Guerra, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculation of K-, L- and M-shell x-ray fluorescence yields for Ba." Physica Scripta 90 (2015): 1-3. AbstractWebsite

Physica Scripta, 90(2015) 054009. doi:10.1088/0031-8949/90/5/054009

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of K&alpha; hypersatellite line energies and transition probabilities for selected atoms with 12 ≤ Z ≤ 80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite

The transition probabilities of K&alpha; hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac&ndash;Fock model for several values of atomic number <I>Z</I> throughout the periodic table. The influence of the Breit interaction on the K&alpha;<SUB>1</SUB><SUP>h</SUP>/K&alpha;<SUB>2</SUB><SUP>h</SUP> line intensity ratio, K&alpha;<SUB>1</SUB><SUP>h</SUP> and K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy shifts and K&alpha;<SUB>1</SUB><SUP>h</SUP> to K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 &les;<I>Z</I>&les; 30, calculated within the same approach, are compared with available experimental results.

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kα hypersatellite line energies and transition probabilities for selected atoms with 12<=Z<=80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite
The transition probabilities of Kα hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac–Fock model for several values of atomic number Z throughout the periodic table. The influence of the Breit interaction on the Kα1h/Kα2h line intensity ratio, Kα1h and Kα2h line energy shifts and Kα1h to Kα2h line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 ⩽Z⩽ 30, calculated within the same approach, are compared with available experimental results.
Indelicato, P., G. C. Rodrigues, E. Lindroth, M. A. Ourdane, F. Parente, J. P. Santos, P. Patté, and J. Bieron. "Relativistic and many-body effects on total binding energies of Cesium and other highly-charged ion." Physica Scripta T92 (2001): 327. Abstract

The determination of atomic masses from highly ionized atoms using Penning Traps requires precise values for electronic binding energies. In the present work, binding energies of several ions (from several elements) are calculated in the framework of two relativistic many-body methods: Relativistic Many-Body Perturbation Theory (RMBPT) and Multi-Configuration Dirac– Fock (MCDF). The ions studied in this work are: Cl (He and Li-like), Se (F and Ne-like), Cs (He, Be, Ne, Al, Cl, Ar, K, Kr, Xe-like and neutral Cs), Hg, Pb and U (Br and Kr-like). Some of them are presented in this paper. Cesium has been treated in more details, allowing for a systematic comparison between MCDF and RMBPT methods. The Cs ions binding energies allow for the determination of atomic Cs mass, which can be used in a QED-independent fine structure constant determination.

Santos, J. P., J. P. Marques, F. Parente, P. Indelicato, and J. P. Desclaux. "Relativistic 2s1/2 (L1) atomic subshell radiationless transition probabilities for Yb and Hg." Atomic Data and Nuclear Data Tables 76 (2000): 49-69. Abstract

Radiationless transition rates to L1 vacancy states have been calculated ab initio in the Dirac-Fock approximation. The calculations include quantum-electrodynamic corrections. Results in the jj coupling scheme for all possible L1 transitions are tabulated for elements Yb and Hg.

Santos, J. P., J. P. Marques, F. Parente, E. Lindroth, P. Indelicato, and J. P. Desclaux. "Relativistic 2s1/2 (L1) atomic subshell decay rates and fluorescence yields for Yb and Hg." Journal of Physics B: Atomic and Molecular Physics 32 (1999): 2089. AbstractWebsite
n/a
Santos, J. P., J. Machado, Guojie Bian, Nancy Paul, M. Trassinelli, P. Amaro, M. Guerra, C. I. Szabo, A. Gumberidze, J. M. Isac, J. P. Santos, J. P. Desclaux, and P. Indelicato. "Reference-free measurements of the 1s2s2p2P1/2,3/2o\rightarrow1s22s2S1/2 and 1s2s2p4P5/2\rightarrow1s22s2S1/2 transition energies and widths in lithiumlike sulfur and argon ions." Physical Review A (2020). AbstractWebsite
n/a