Dyke, J. M., G. Levita, A. Morris, J. S. Ogden, A. A. Dias, M. Algarra, J. P. Santos, M. L. Costa, P. Rodrigues, M. M. Andrade, and M. T. Barros. "
Contrasting Behavior in Azide Pyrolyses: An Investigation of the Thermal Decompositions of Methyl Azidoformate, Ethyl Azidoformate and 2-Azido-N, N-dimethylacetamide by Ultraviolet Photoelectron Spectroscopy and Matrix Isolation Infrared Spectroscopy."
Chemistry - A European Journal 11 (2005): 1665-1676.
AbstractThe thermal decompositions of methyl azidoformate (N3COOMe), ethyl azidoformate (N3COOEt) and 2-azido-N,N-dimethylacetamide (N3CH2CONMe2) have been studied by matrix isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2 appears as an initial pyrolysis product in all systems, and the principal interest lies in the fate of the accompanying organic fragment. For methyl azidoformate, four accompanying products were observed: HNCO, H2CO, CH2NH and CO2, and these are believed to arise as a result of two competing decomposition routes of a four-membered cyclic intermediate. Ethyl azidoformate pyrolysis yields four corresponding products: HNCO, MeCHO, MeCHNH and CO2, together with the five-membered-ring compound 2-oxazolidone. In contrast, the initial pyrolysis of 2-azido-N,N-dimethyl acetamide, yields the novel imine intermediate Me2NCOCHNH, which subsequently decomposes into dimethyl formamide (HCONMe2), CO, Me2NH and HCN. This intermediate was detected by matrix isolation IR spectroscopy, and its identity confirmed both by a molecular orbital calculation of its IR spectrum, and by the temperature dependence and distribution of products in the PES and IR studies. Mechanisms are proposed for the formation and decomposition of all the products observed in these three systems, based on the experimental evidence and the results of supporting molecular orbital calculations.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "
Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions."
The European Physical Journal D 37 (2006): 201-207.
AbstractTotal electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.
Guimarães, D., M. L. Carvalho, V. Geraldes, I. Rocha, and J. P. Santos. "
Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect."
Metallomics In Press (2011): DOI: 10.1039/c1mt00149c.
AbstractThe accumulation of lead in several bones of Wistar rats with time was determined and comparedQ3 for the different types of bones. Two groups were studied: a control group (n = 20), not exposedto lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly throughmother’s milk, and then directly through a diet containing lead acetate in drinking water (0.2%).Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of thecollections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia–fibula and skull havebeen analysed by energy dispersive X-ray fluorescence technique (EDXRF). Samples offormaldehyde used to preserve the bone tissues were also analysed by Electrothermal AtomicAbsorption (ETAAS), showing that there was no significant loss of lead from the tissue to thepreservative. The bones mean lead concentration of exposed rats range from 100 to 300 mg g 1while control rats never exceeded 10 mg g 1. Mean bone lead concentrations were compared andthe concentrations were higher in iliac, femur and tibia–fibula and after that skull. However, ofall the concentrations in the different collections, only those in the skull were statisticallyQ4 significantly different (p o 0.05) from the other types of bones. Analysis of a radar chart alsoallowed us to say that these differences tend to diminish with age. The Spearman correlation testapplied to mean lead concentrations showed strong and very strong positive correlations betweenall different types of bones. This test also showed that mean lead concentrations in bones arenegatively correlated with the age of the animals. This correlation is strong in iliac and femur andvery strong in tibia–fibula and skull. It was also shown that the decrease of lead accumulationwith age is made by three plateaus of accumulation,
Pinto, R. M., R. I. Olariu, J. Lameiras, F. T. Martins, A. A. Dias, G. J. Langley, P. Rodrigues, C. D. Maycock, J. P. Santos, M. F. Duarte, M. T. Fernandez, and M. L. Costa. "
Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry."
Journal of Molecular Structure 980 (2010): 163-171.
AbstractBenzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.