Export 105 results:
Sort by: Author Title Type [ Year  (Desc)]
Sacristán, A., E. Faggiano, M. Santacruz-Rodríguez, and H. Rocha. "Policies and implementations for technology use in mathematics education: perspectives from around the world." Handbook of digital resources in mathematics education. Springer, 2024. 1-35. Abstract

In this chapter, we examine the role of policies and other factors affecting digital technology (DT) integration in mathematics education. In particular, we develop a cross-national analysis of the impact on DT implementation in four countries: two countries in Europe (Italy and Portugal) and two countries in Latin America (Colombia and Mexico). We analyze the role that policies, political changes, reforms, curricula, educational organization and systems, sociocultural aspects, and teachers’ training, knowledge, and beliefs play toward possible DT implementations. We observe that there is a discourse in policies to promote digital technologies’ use, but in practice the availability and integration of such resources in mathematics classrooms is still scarce. We also note that the efforts done during the pandemic did not change this, promoting general ICT use, rather than DT resources that might enhance mathematics teaching and learning.

Rocha, H., F. Viseu, and S. Matos. "Problem solving in a real-life context: an approach during the learning of inequalities." European Journal of Science and Mathematics Education. 12.1 (2024). AbstractWebsite

This study was conducted while 9th grade students learn to solve inequalities and seeks to understand their approach to solving problems with a real-life context. Specifically, the aim is to understand: (1) What are the main characteristics of the students’ approaches to the proposed problems? (2) What is the impact of the real context on the students’ resolutions? A qualitative and interpretative methodology is adopted, based on case studies, with data collected through documentary collection and audio recording of discussions between a pair of students while solving problems. The main conclusions suggest a trend to approach problems without establishing immediate connections with what was being done in the classroom, with students’ decisions being essentially guided by criteria of simplicity. The real context of the problems seems to have the potential to develop in students a more integrated mathematics, focused on understanding and not so much on the repetition of mechanical and meaning-independent procedures. The students’ familiarization with the context in question is one of the aspects highlighted by this study.

Rocha, H., and A. Babo. "Problem-solving and mathematical competence: a look to the relation during the study of Linear Programming." Thinking Skills and Creativity. 51 (2024): 1-14. AbstractWebsite

This study seeks reflection on the approaches of 11th grade students to Linear Programming problems, discussing the approaches taken at different moments of the teaching process. It aims to analyze:
How is the students’ mathematical competence characterized in relation to problemsolving;
What differences can be identified in the resolutions at different moments of the teaching and learning process.
We adopt a qualitative and interpretative methodology, analyzing the approaches of two pairs of students with different mathematical backgrounds. The analysis is guided by P´olya’s stages of solving a problem and aspects of the understanding of mathematical competence. The results show different approaches to the problems depending on the teaching moment and different competences. The mathematical background impacts the students’ success when they implement routine procedures, however it does not seem to determine the students’ competence to reason about a problem.

Faggiano, E., A. Sacristán, H. Rocha, and M. Santacruz-Rodríguez Addressing the congruence and similarity of figures with technology: A cross-national comparison. ICTMT., 2023.
Rocha, H. "Analyzing teachers’ knowledge based on their approach to the information provided by technology." European Journal of Science and Mathematics Education. 11.1 (2023): 132-145. AbstractWebsite

Teachers’ knowledge plays a central role in technology integration. In this study we analyze situations, where there is some divergence between the mathematical results and the information offered by the graphing calculator (lack of mathematical fidelity), putting the focus in the teachers and in their approaches. The goal of this study is to analyze, in the light of knowledge for teaching mathematics with technology (KTMT) model, the teachers’ professional knowledge, assuming the situations of lack of mathematical fidelity as having the potential to reveal some characteristics of their knowledge. Specifically, considering the teaching of functions at 10th grade (age 16), we intend to analyze: (1) What knowledge do the teachers have of technology and of its mathematical fidelity? (2) What can the teachers’ options related to situations of lack of mathematical fidelity tell us about their knowledge in other KTMT domains? The study adopts a qualitative and interpretative approach based on the case studies of two teachers. Data were collected by interviews and class observation, being the analysis guided by the KTMT model. The main result points to the relevance of the mathematics and technology knowledge. However, there is evidence of some difficulties to integrate the information provided by the technology with the mathematics, and also of some interference of the teaching and learning and technology knowledge, and specifically of the knowledge related to the students. This suggests that the analysis of the teachers’ actions in relation to situations of lack of mathematical fidelity, can be useful to characterize their KTMT.

Ferreira, G., H. Rocha, and A. Rodrigues As conexões matemáticas na resolução de problemas. Atas do EIEM 2023 - Encontro em Investigação em Educação Matemática. Aveiro: SPIEM, 2023.
Botelho, M. C., T. Coelho, and H. Rocha Fluência representacional: a Matemática na resolução de problemas de Física. Atas do EIEM 2023 – Encontro em Investigação em Educação Matemática. Aveiro: SPIEM, 2023.
Martins, R., F. Viseu, and H. Rocha. "Functional Thinking: A Study with 10th-Grade Students." Education Sciences. 13.4 (2023): 1-22. AbstractWebsite

This study aims to understand the functional thinking of 10th-grade students while studying functions. Specifically, we intend to answer the following research questions: what are the functional thinking processes used by 10th-grade students when studying functions? What difficulties do students present while learning functions? In view of the nature of this research objective, we adopted a qualitative and interpretative approach. In order to answer these questions, data were collected from the written records produced by the students while solving the proposed tasks, from records of the oral interactions during discussions and from a questionnaire. The results show that functional thinking processes were implicit in the resolution of the tasks proposed to the students. The students expressed an understanding of how the variables were related, presenting evidence of their functional thinking while working on the new concepts represented by the functions addressed in the proposed tasks. Some students expressed difficulties in interpreting the different types of representations associated with the functions, in retaining the necessary information from a graphical representation that would help them to draw conclusions and establish correspondences, in explaining functional relationships, and in interpreting the information provided by algebraic expressions. These difficulties can reduce the recognition of the relationships between variables and their behavior in the different representations, becoming an obstacle to learning for some students.

Botelho, M. C., T. Coelho, and H. Rocha How the use of different technologies mobilises different domains of professional knowledge. Cerme 13. Budapest, Hungary, 2023.
Rocha, H. "The impact of teachers' knowledge on the connection between technology supported exploration and mathematical proof." European Journal of Science and Mathematics Education. 11.4 (2023): 635-649. AbstractWebsite

Technology is recognized for its potential to implement exploration tasks. The ease and speed with which it becomes possible to observe many cases of a situation, allows the development of conjectures and brings conviction about their veracity. Mathematical proof, assumed as the essence of Mathematics, tends to appear to the students as something dispensable. Based on KTMT – Knowledge for Teaching Mathematics with Technology model, this study intends to understand the impact of the teachers’ knowledge on mathematical proof in a context of technology integration. The study adopts a qualitative and interpretative methodology, based on case study, analyzing the practice of one teacher. The conclusions emphasize the relevance of the teacher’s MTK – Mathematics and Technology Knowledge, and TLTK – Teaching and Learning and Technology Knowledge. The teacher's MTK guides her decisions, leading her to focus on helping students understand the meaning of conjecture and proof, valuing, at the same time, the relevance of algebraic manipulations. However, the teacher’s TLTK guides her practice, where the knowledge about the students is determinant. The study provides evidence about the difficulty of articulating proof and technology, but it also clarifies the relevance of this articulation and of how the teacher’s KTMT can impact the teacher’s decisions.

Teixeira, P., C. Martins, and H. Rocha Abordagem STEAM: articulação disciplinar e práticas letivas de professores. Atas do Encontro de Investigação em Educação Matemática., 2022.
Rocha, H. "Contribution of the analysis of the mathematical concordance to understand the teachers’ KTMT." Journal of Curriculum and Teaching. 11.8 (2022): 412-422. AbstractWebsite

Technology is recognized by its potential to promote mathematical learning. However, achieving this potential
requires the teachers to have the knowledge to integrate it properly into their practices. Several authors have intended to characterize the teachers’ knowledge and developed several models, but this approach has often been criticized by its static approach, not attending neither valuing the teachers’ practice. In this study we adopt the KTMT – Knowledge for Teaching Mathematics with Technology model, assuming the teachers’ practice as the main scenario of analysis. We focus on the options guiding the teachers’ decisions when confronted with a situation of lack of mathematical concordance while teaching functions. The situations of lack of mathematical concordance (i.e., situations where the mathematics addressed by the students is different from the one intended by the teacher) are assumed as rich and encapsulating the potential to reveal significant aspects of the teachers’ KTMT. The main goal of the study is to understand what domains of the teachers’ KTMT are highlighted in these circumstances. A qualitative methodology is adopted and one episode of one 10th grade teacher’s practice is analyzed, based on the KTMT model. The conclusions reached show the relevance of different knowledge domains, but emphasize the Mathematics and Technology Knowledge (MTK). They also raise questions about the impact of the specific technology being used on the teachers’ KTMT.

Viseu, F., A. Silva, H. Rocha, and P. Martins. "The graphical representation in the learning of functions by 10th grade students." Educación Matemática. 34.1 (2022): 186-213. AbstractWebsite

A exploração de diferentes representações promove a compreensão dos tópicos de funções. Partindo deste pressuposto, com este estudo pretende-se analisar o contributo da representação gráfica na aprendizagem da noção de função inversa e da paridade de uma função por alunos do 10.º ano de escolaridade e identificar dificuldades na exploração dessa representação. Na procura de responder a este objetivo, adotou-se uma abordagem qualitativa e interpretativa para compreender as ações dos alunos na resolução das tarefas
propostas. A análise das resoluções mostra que a representação gráfica serviu de suporte para a instituição das definições dos tópicos em estudo. E isto apesar de alguns alunos revelarem dificuldades ao interpretar e ao construir gráficos; ao identificar imagens e imagens inversas em gráficos de funções; ao representar determinadas características gráficas associadas a alguns conceitos, como é o caso da relação entre a paridade de uma função e a simetria na sua representação gráfica (confundindo eixo de simetria e de reflexão). Globalmente, este estudo mostra como a abordagem de conceitos a partir da representação gráfica pode contribuir para a sua compreensão.

Botelho, M. C., and H. Rocha O conhecimento do professor de matemática e a integração das tecnologias na sua prática. Atas do Encontro de Investigação em Educação Matemática., 2022.