Publications

Export 112 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Viseu, F., H. Rocha, and J. Monteiro. "Rethinking digital technology versus paper and pencil in 3D Geometry." Journal of Learning for Development. 9.2 (2022): 267-278. AbstractWebsite

Recognising the relevance of learning Geometry, and in particular 3D Geometry, this study aims to discuss the contributions that digital technology and paper and pencil approaches can bring to students’ learning. We seek, therefore, to identify the differences between the two approaches, and specifically: What factors are relevant in one and the other approach? What does one approach facilitate over the other? A quantitative and a qualitative and interpretive methodology was adopted, and based on a didactic intervention, the students' resolutions of the proposed tasks were analysed. The results obtained show that the experience and prior knowledge of the students with each of the solids involved seems to be decisive in the approach with paper and pencil. However, technology emerges as an enhancing resource when prior knowledge is more fragile. The study also shows differences between the representations supported by the two resources, suggesting the mobilisation of different knowledge by the students in relation to each of the resources.

Viseu, F., P. Mendes, and H. Rocha The notion of function by basic education preservice teachers. ATEE Winter Conference ‘Science and mathematics education in the 21st century. Brussels: ATEE and CIEd, 2019. Abstract

The current curricular guidelines for mathematics education in Portugal emphasize the relevance of working with different representations of functions to promote understanding. Given this relevance, we seek understanding about the notion of function held by 37 basic education pre-service teachers in their first year of a master’s course. Data were collected through a task focusing on identifying functions in situations based on different representations. The content analysis technique was then adopted in the search for an understanding of the justifications given by the participants. The results achieved suggest it is easier for the pre-service teachers to identify examples that are not functions than examples that are functions. There is also a tendency for greater accuracy in the identification of examples expressed by tables than by algebraic expressions. The justifications presented show a notion of function as a relation between values of two non-empty sets, but without guaranteeing that this relation is single-valued.

Viseu, F., A. Silva, H. Rocha, and P. Martins. "The graphical representation in the learning of functions by 10th grade students." Educación Matemática. 34.1 (2022): 186-213. AbstractWebsite

A exploração de diferentes representações promove a compreensão dos tópicos de funções. Partindo deste pressuposto, com este estudo pretende-se analisar o contributo da representação gráfica na aprendizagem da noção de função inversa e da paridade de uma função por alunos do 10.º ano de escolaridade e identificar dificuldades na exploração dessa representação. Na procura de responder a este objetivo, adotou-se uma abordagem qualitativa e interpretativa para compreender as ações dos alunos na resolução das tarefas
propostas. A análise das resoluções mostra que a representação gráfica serviu de suporte para a instituição das definições dos tópicos em estudo. E isto apesar de alguns alunos revelarem dificuldades ao interpretar e ao construir gráficos; ao identificar imagens e imagens inversas em gráficos de funções; ao representar determinadas características gráficas associadas a alguns conceitos, como é o caso da relação entre a paridade de uma função e a simetria na sua representação gráfica (confundindo eixo de simetria e de reflexão). Globalmente, este estudo mostra como a abordagem de conceitos a partir da representação gráfica pode contribuir para a sua compreensão.

Viseu, F., and H. Rocha. "Perceptions of mathematics teachers on the teaching of functions and on the use of technological materials - Perceções de professores de matemática sobre o ensino de funções e sobre o uso de materiais tecnológicos." Educação Matemática Pesquisa. 20.2 (2018): 113-139. AbstractWebsite

This study intends to understand the perceptions of mathematics teachers from lower and upper secondary regarding the teaching of Functions and the use of technological materials. For that, a mixed methodology was adopted, and the perceptions of 129 teachers were collected through a questionnaire and four teachers through an interview. The main conclusions point to similarities in teachers' perceptions, but also to some differences related to the teaching level of lower or upper secondary. In the teaching of Functions, textbooks are widely used, but differently depending on the level being taught. The same happens with the representations and with the use that is made of the technologies. Involvement of students in work is another aspect considered important, but again there are differences. The assessment also has similarities, but differs in the valuation ascribed to group work.

Viseu, F., S. Campos, J. Fernandes, and H. Rocha. "The use of graphing calculator in the exploration of nonlinear continuous models." Revemat. 11.2 (2016): 79-98. AbstractWebsite

The integration of the graphing calculator in mathematical activity encourages students to express many of their processes and ways of thinking. Since some of the activities at the high school level are carried out with the graphing calculator, we intend to investigate the contribution of this resource to promote the learning of nonlinear continuous models in the 11th grade. By adopting a qualitative methodology, we collected and analysed the students‟ writing productions. At first, students used to present the information given by the calculator with no justification. As they acquire skills in the use of this resource, they usually set up the viewing window in order to visualize the graphical representations of functions that model the problem situation they are working on and also relate the different existing menus in the study of those functions characteristics. Such procedures make students to present the data collected in the calculator with a justification of their arguments and a validation of their conjectures.

Viseu, F., and H. Rocha. "Interdisciplinary technological approaches from a mathematics education point of view." Science and mathematics education for 21st century citizens: challenges and ways forward. Eds. L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado, and H. Martinho. Nova Science Publishers, 2020. Abstract

Mathematics has a strong presence in the school curriculum, often justified by its usefulness in social life, in the world of work and by its connections with other sciences. This interdisciplinary connection, in particular when it requires constructing and refining mathematical models and discussing their applications to solve problems of other sciences, can assist students to understand why mathematics is so important in school. In the development of interdisciplinary activities, the characteristics of the tasks emerge as an important aspect. The emphasis is on the use of technological materials and the way they can support the development of concepts, provide different representations and support deeper understandings, and offer a multifaceted support to collect data and simulate experiences. Based on these assumptions, the aim of this chapter is to present, analyse and discuss tasks that promote interdisciplinary technological approaches from a mathematical point of view. In this chapter we assume interdisciplinarity as a complex construct, and in order to clarify its meaning we will discuss several types of conceptions, from multidisciplinary, to interdisciplinary, and to transdisciplinary. We will then address related concepts, such as modelling and STEM, highlighting similarities and differences between them, to reach an understanding of interdisciplinarity. In the process of the interdiciplinary approach, digital technologies arise as a central element. Based on a set of tasks on mathematics and on different sciences, we discuss what can change on an interdisciplinary approach to the teaching and learning of mathematical content and on the articulation between subjects.

T
Teixeira, P., C. Martins, and H. Rocha STE(A)M approach: Distinguishing and discussing meanings. EduLearn. Spain: IATED, 2022. Abstract

The STE(A)M approach has been recognized by several authors for its potential in assisting teaching and learning, and several curriculum standards already value its application in the classroom. This approach is based on the articulation between different areas, the clarification, and the deepening of the concepts being studied. Although there are different approaches, according to the fields involved, STEM and STEAM are two among the most often mentioned in the literature. STEM is based on learning that integrates the following areas of knowledge: Science, Technology, Engineering, and Mathematics. The conceptualization of the STE(A)M approach is not consensual and uniform. There are different models focusing on problem-solving based learning, project-based-learning, design-based learning, and engineering models. Still, different authors present different conceptualizations of this approach. In this paper, we relied on the existing literature to discuss the different understandings of the STE(A)M approach. We will also pay attention to mathematics and how different authors see the disciplines’ role within a STE(A)M approach and discuss the evolution of the mentioned authors’ positions throughout time. Thus, methodologically, we undertook the following steps: (i) literature search based on the selected keywords; (ii) selection of the texts, considering the authors and time gap, in order to analyze the evolution of the research and (iii) collection and organization of the relevant topics for the study. This study aims to present the meanings, conceptualizations, and possible influences present in different models and for understand the evolution of the STEM and STEAM approaches over time. The main findings suggest a focus on the interdisciplinary or transdisciplinary approach as opposed to the primeval years of investigations in STEM and STEAM when many authors advocated a multidisciplinary approach. This change in thinking is due to the need to train students in an integral and holistic manner, developing citizens with transversal knowledge and skills prepared for the current societal challenges.

Teixeira, P., C. Martins, and H. Rocha Abordagem STEAM: articulação disciplinar e práticas letivas de professores. Atas do Encontro de Investigação em Educação Matemática., 2022.
S
Sacristán, A., E. Faggiano, M. Santacruz-Rodríguez, and H. Rocha. "Policies and implementations for technology use in mathematics education: perspectives from around the world." Handbook of digital resources in mathematics education. Springer, 2024. 1-35. Abstract

In this chapter, we examine the role of policies and other factors affecting digital technology (DT) integration in mathematics education. In particular, we develop a cross-national analysis of the impact on DT implementation in four countries: two countries in Europe (Italy and Portugal) and two countries in Latin America (Colombia and Mexico). We analyze the role that policies, political changes, reforms, curricula, educational organization and systems, sociocultural aspects, and teachers’ training, knowledge, and beliefs play toward possible DT implementations. We observe that there is a discourse in policies to promote digital technologies’ use, but in practice the availability and integration of such resources in mathematics classrooms is still scarce. We also note that the efforts done during the pandemic did not change this, promoting general ICT use, rather than DT resources that might enhance mathematics teaching and learning.

R
Roque, C., and H. Rocha Avaliação formativa com recurso à tecnologia [Formative assessment using technology]. SIEM. Almada, Portugal: APM, 2018. Abstract

The present study aims to understand the potentialities and implications,
to the teacher and her practice, of the use of formative assessment with the support
of educational technology.
Regarding the research methodology, this study is part of the research on own
practice. The participants were the teacher, who was simultaneously a researcher,
and the students of a 9th grade class.
In the course of this experience it was found that the use of formative assessment
allows, on the one hand, the student to realize what he manages to understand, and
what he has to do to overcome what are less consolidated parts of the content in
study; and, on the other, the teacher to detect in a timely manner the difficulties of
the student and to change strategies to allow the student to overcome his difficulties.
The lack of time, the difficulties in managing the curriculum and the existence of
national exams are three of the main obstacles mentioned by the teachers for the
non-realization of formative assessment. In this experience it was found that the use
of new technologies turns possible to overcome these limitations.
This type of assessment had a very positive impact on teacher’s practice and in the
learning of the students.
Keywords: assessment; formative assessment; new technologies.

Rocha, H. Games and the learning of mathematics outside the classroom. Proceedings of the International Conference on Education and New Learning Technologies. Barcelona, Spain: EduLearn, 2014. Abstract

GAMES AND THE LEARNING OF MATHEMATICS OUTSIDE THE CLASSROOM
H. Rocha

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

Playing games is a recreational activity that is also highly recognized as a potentially rich activity for the teaching and learning. It is an activity that involves the recognition and observance of rules, as well as the development of strategies to achieve victory. It is thus an activity that encourages compliance with rules but also the development of learning and therefore has a socializing character while stimulating critical thinking and analysis of situations. This is why many authors think about playing games as a problem-solving activity with great potential for the learning of mathematics. However, a review of the literature suggests that mathematical learning does not always occur, pointing to the relevance of the specific features of the game and the circumstances in which it is used. Looking to contribute to a better understanding of these issues, the project that was the basis of this study focuses on the use of games by middle school students, intending to promote their mathematical learning in a voluntary and informal context, outside the classroom. The games were available in MatLab, a room of the school supervised by mathematics teachers, which students could visit in their leisure time. In this communication I intend to analyze how the visits to MatLab contributed to the mathematical learning of students, considering the influence of specific characteristics of the games and the atmosphere created in MatLab, given the students’ previous mathematical knowledge.

The study adopts a qualitative and interpretative methodological approach, undertaking two student case studies. Data collection was completed over three months and included observation of twenty visits of these students to MatLab. Data collection was made through the development of a logbook, audio record of the students’ visits and two interviews to the students and to their teacher. Data analysis was based on the evidence gathered in the light of the problem under study.

The conclusions reached stress the importance of certain features of the games to promote student engagement, leading to a desire for self-improvement, very important for the development of sustained learning. Computer games have proven to have a stronger potential to engage students than board games. Nevertheless, the most important characteristics of a game seem to be related to the possibility of playing at different mathematical levels (without getting blocked by lack of knowledge) and to the possibility of keep getting better marks (without the existence of a maximum level from which evolution is not possible). In what concerns to achievement in mathematics’ classes, the students’ teacher reports an improvement in mathematics knowledge (more evident in the average achiever student) as well as an increase in students’ involvement in class work (more evident in the low achiever student).

keywords: game-based learning, mathematics, informal learning.

Rocha, H., and F. Viseu Teachers’ perspectives on the use of technology to teach Functions at lower and upper secondary. Proceedings of the 5th ERME Topic Conference - MEDA 2018. Copenhagen, Denmark: ERME, 2018. Abstractmeda_rocha_2018.pdf

This study aims to understand the perceptions of lower and upper secondary age teachers of mathematics regarding the use of technology to teach functions. For that, a mixed methodology was adopted, and the perceptions of 129 teachers were collected through a questionnaire (quantitative section) and four teachers through an interview (qualitative section). The main conclusions point to similarities in teachers' perceptions, but also to some differences related to the level that they taught. Teachers show conviction about their knowledge on technology and about the potential of technology in what concerns their teaching and the students’ learning. However, they are not so clear about the best way to articulate technology and paper-and-pencil methods, nor about the use of technology in assessment.

Rocha, H. "Graphical representation of functions using technology: a window to teacher knowledge." Teaching Mathematics and its Applications. 39.2 (2020): 105-126.Website
Rocha, H. The teacher and the integration of the graphing calculator viewing window in the teaching of mathematics. Proceedings of 8th International Technology, Education and Development Conference. Valencia, Spain: INTED, 2014.
Rocha, H. Uma caracterização dos jogos com maior potencial para estimular a aprendizagem matemática. Atas do XII Congresso da SPCE. Vila Real, Portugal: UTAD e SPCE, 2014. Abstractpaper.pdf

Reconhecendo o potencial do jogo para a aprendizagem matemática, este estudo pretende analisar o envolvimento e as aprendizagens dos alunos, com o objectivo de caracterizar os jogos com maior potencial para os promover.
Adoptando uma metodologia de índole qualitativa e envolvendo a realização de estudos de caso sobre alunos do 7.ºano, as conclusões alcançadas sugerem que os jogos de computador são particularmente apelativos para os alunos. Contudo, as características determinantes para o envolvimento dos alunos e consequente promoção da aprendizagem prendem-se com a possibilidade de jogar com diferentes níveis de conhecimento e com a obtenção de bons resultados no jogo.

Rocha, H. Desenvolver o conhecimento de futuros professores sobre as características das tarefas e o papel que a tecnologia pode assumir nestas. SIEM. Castelo Branco, Portugal: APM, 2019. Abstract

The main goal of this work is to characterize how the knowledge of pre-service teachers about the characteristics of the tasks and the role of technology evolves. Based on a case study carried out around a pair of pre-service teachers, the main conclusions point to the contribution of the reflection around a set of six tasks on Functions selected by the pre-service teachers. Central to this reflection was an analyze of the role technology can play in tasks, the comments made by the colleagues to their tasks and some experiences on modeling and open-ended tasks. These elements provided the development of a greater awareness regarding aspects such as the level of structuring of the task and its degree of challenge. And this was determinant for an appropriation of the different characteristics of the tasks and to the development of the pre-service teachers’ knowledge.

Rocha, H. "The impact of teachers' knowledge on the connection between technology supported exploration and mathematical proof." European Journal of Science and Mathematics Education. 11.4 (2023): 635-649. AbstractWebsite

Technology is recognized for its potential to implement exploration tasks. The ease and speed with which it becomes possible to observe many cases of a situation, allows the development of conjectures and brings conviction about their veracity. Mathematical proof, assumed as the essence of Mathematics, tends to appear to the students as something dispensable. Based on KTMT – Knowledge for Teaching Mathematics with Technology model, this study intends to understand the impact of the teachers’ knowledge on mathematical proof in a context of technology integration. The study adopts a qualitative and interpretative methodology, based on case study, analyzing the practice of one teacher. The conclusions emphasize the relevance of the teacher’s MTK – Mathematics and Technology Knowledge, and TLTK – Teaching and Learning and Technology Knowledge. The teacher's MTK guides her decisions, leading her to focus on helping students understand the meaning of conjecture and proof, valuing, at the same time, the relevance of algebraic manipulations. However, the teacher’s TLTK guides her practice, where the knowledge about the students is determinant. The study provides evidence about the difficulty of articulating proof and technology, but it also clarifies the relevance of this articulation and of how the teacher’s KTMT can impact the teacher’s decisions.

Rocha, H., and I. Oitavem. "A mudança que abala o mundo – Editorial." Educação e Matemática.116 (2012): 1.
Rocha, H. "Teacher knowledge and the teaching of statistics using a graphing calculator - Conhecimento profissional e ensino de estatística com recurso à calculadora gráfica." REIPE. E.6 (2017): 96-100. AbstractWebsite

Teaching statistics is often based on an approach focused on teaching theoretical aspects, disconnected from
practical relevance and from interpretation of results, and where the use of technology lies behind its potential. In
this context, it is important to analyze how the teachers’ knowledge is characterized and to identify aspects of this
knowledge that mark the professional practice. The conclusions reached emphasize the impact of content
knowledge and its influence on knowledge of content and teaching. Knowledge of curriculum is also relevant, as
well as the way how it seems to prevent the development of other types of knowledge.

Rocha, H. A calculadora gráfica no ensino das funções: implicações sobre aspectos da prática de uma professora. Actas do EIEM – Encontro de Investigação em Educação Matemática. Póvoa do Varzim, Portugal: SPIEM, 2011.
Rocha, H. The impact of the cultural context on the professional practice of the teacher. Proceedings of 8th Annual International Conference of Education, Research and Innovation. Seville, Spain: ICERI, 2015. Abstract

THE IMPACT OF THE CULTURAL CONTEXT ON THE PROFESSIONAL PRACTICE OF THE TEACHER

H. Rocha

Universidade NOVA de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

The professional knowledge is a key element of the teacher’s practice. This knowledge is naturally influenced by the teacher’s beliefs and conceptions and by his training, but the context where he develops his practice is perhaps the most decisive influence. At this level, the school where the teacher works and his colleagues are a powerful influence, but the characteristics of his students are even a stronger influence. The cultural diversity of the students and specifically the linguistic diversity are highly relevant elements. A classroom where different languages converge is always a complex context which requires a deeper professional knowledge with inevitable repercussions over the teacher’s practice.

This study focuses on a teacher working with a mathematics’ class of foreign students with heavy linguistic limitations on the language of instruction and it intends to analyze the impact of this context on the teacher’s practice. In particular, it intends to analyze how this context interferes with the characteristics of the tasks proposed by the teacher and with the way how mathematical concepts are presented to the students.

The study adopts a qualitative and interpretative methodological approach, undertaking one teacher case study. Data were collected during one school year by semi-structured interviews, class observation, and documental data gathering. All interviews and classes observed were audio taped and transcribed. Data analysis was conducted in an interpretative way.

The conclusions reached point to an increase on the appreciation of mechanization, to a large reduction in the use of problematic situations and to a presentation of Mathematics as calculation, disconnected from any application, and where reasoning appears as a marginal element or is even missing. The use of several examples becomes a key element of the practice of this teacher. The main finding of this study suggests that language limitations caused a strong impact on the practice of a teacher who considers the understanding and the development of reasoning from the discussion around mathematical ideas as central to the teaching of this subject. It was also possible to identify that the need to find a way to communicate reinforced the formalism of the mathematical language, placing it in the center of the learning process.

Keywords: cultural context, teacher’s practice, mathematics.

Rocha, H. O professor e a fidelidade matemática da calculadora gráfica no estudo de Funções [The teacher and the mathematical fidelity of the graphing calculator in the study of Functions]. XXVIII SIEM. Viseu, Portugal: APM, 2017. Abstract

The teacher's knowledge of the mathematical fidelity of technology and the impact it has on the teacher’s practice is the focus of this article. Based on the conceptualization of Knowledge for Teaching Mathematics with Technology (KTMT), and involving the teaching of Functions at the 10th grade, we analyze: the situations of lack of mathematical fidelity considered by the teacher in the classes, the way how the teacher manages students' contact with this kind of situations, and how the teacher supports students when they are faced with a lack of mathematical fidelity. The conclusions reached point to: some devaluation of the situations of lack of mathematical fidelity, with only one type of situation being explicitly addressed; a careful selection of tasks, in order to ensure that these situations do not occur too soon; a focus on the identification by the students of this type of situation, suggesting what they can do to confirm the suspicion but without effective implementation of the process. As a consequence, knowledge of mathematical fidelity does not necessarily have a relevant impact on teacher’s practice and it is not easily transformed into a deep teacher’s KTMT.

Rocha, H., F. Viseu, and S. Matos. "Problem solving in a real-life context: an approach during the learning of inequalities." European Journal of Science and Mathematics Education. 12.1 (2024). AbstractWebsite

This study was conducted while 9th grade students learn to solve inequalities and seeks to understand their approach to solving problems with a real-life context. Specifically, the aim is to understand: (1) What are the main characteristics of the students’ approaches to the proposed problems? (2) What is the impact of the real context on the students’ resolutions? A qualitative and interpretative methodology is adopted, based on case studies, with data collected through documentary collection and audio recording of discussions between a pair of students while solving problems. The main conclusions suggest a trend to approach problems without establishing immediate connections with what was being done in the classroom, with students’ decisions being essentially guided by criteria of simplicity. The real context of the problems seems to have the potential to develop in students a more integrated mathematics, focused on understanding and not so much on the repetition of mechanical and meaning-independent procedures. The students’ familiarization with the context in question is one of the aspects highlighted by this study.

Rocha, H. Knowledge for Teaching Mathematics with Technology - a new framework of teacher knowledge. Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education. Kiel, Germany: PME, 2013. Abstract

Knowledge for Teaching Mathematics with Technology (KTMT) is a theoretical model that seeks to articulate previously existing models on professional knowledge and the conclusions that the investigation around the integration of technology has achieved. KTMT is a dynamic knowledge, informed by the practice, that develops from the knowledge on the base domains (Mathematics, Teaching and Learning, Technology and Curriculum), evolving as knowledge in the base domains interacts and as this promotes the development of inter-domain knowledge, which continue to interact, strengthening relations and leading to the development of an integrated knowledge, where knowledge on the base domains and on the two sets of inter-domains appears deeply integrated into a global knowledge.