Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
R
Rocha, H. Knowledge for teaching mathematics with technology and the search for a suitable viewing window to represent functions. Proceedings of Cerme 9. Prague, Czech Republic: ERME, 2015. Abstract

The usual difficulties of students regarding the choice of an appropriate window when using the graphing calculator in the study of functions and the importance of the teachers’ knowledge to overcoming them, led to this study. The main goal was to characterize the way teachers address the viewing window in the classroom, trying to infer aspects of the Knowledge for Teaching Mathematics with Technology that can justify that practice. The conclusions reached point to the importance of a set of specific knowledge where I highlight the knowledge of the students’ difficulties, the knowledge of mathematical content necessary to understand the impact of the viewing window on the graphic, and the knowledge of teaching strategies that address both the students’ difficulties and the relevant mathematical knowledge.

Rocha, H. Knowledge for Teaching Mathematics with Technology - a new framework of teacher knowledge. Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education. Kiel, Germany: PME, 2013. Abstract

Knowledge for Teaching Mathematics with Technology (KTMT) is a theoretical model that seeks to articulate previously existing models on professional knowledge and the conclusions that the investigation around the integration of technology has achieved. KTMT is a dynamic knowledge, informed by the practice, that develops from the knowledge on the base domains (Mathematics, Teaching and Learning, Technology and Curriculum), evolving as knowledge in the base domains interacts and as this promotes the development of inter-domain knowledge, which continue to interact, strengthening relations and leading to the development of an integrated knowledge, where knowledge on the base domains and on the two sets of inter-domains appears deeply integrated into a global knowledge.