Publications

Export 65 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Godinho, M. H., D. Filip, I. Costa, A. - L. Carvalho, J. L. Figueirinhas, and E. M. Terentjev. "Liquid crystalline cellulose derivative elastomer films under uniaxial strain." Cellulose. 16 (2009): 199-205. Abstract
n/a
M
dos Santos, Raquel, Maria João Romão, Ana Cecília A. Roque, and Ana Luísa Carvalho. "Magnetic particles used in a new approach for designed protein crystallization." CrystEngComm. 23 (2021): 1083-1090. AbstractWebsite

After more than one hundred and thirty thousand protein structures determined by X-ray crystallography{,} the challenge of protein crystallization for 3D structure determination remains. In the quest for additives for efficient protein crystallization{,} inorganic materials emerge as an alternative. Magnetic particles (MPs) are versatile inorganic materials{,} easy to use{,} modify and manipulate in a wide range of biological assays. The potential of using functionalised MPs as crystallization chaperones for protein crystallization was shown in this work. MPs with distinct coatings were rationally designed to promote protein crystallization by affinity-triggered heterogeneous nucleation. Hen egg white lysozyme (HEWL) and trypsin{,} were crystallized in the presence of MPs either bare or coated with a polysaccharide (chitin) or a protein (casein){,} respectively. The addition of MPs was characterized in terms of bound protein to the MPs{,} crystal morphology{,} time-lapse of crystal emergence{,} crystallization yield fold change and crystal diffraction quality for structure determination. The MPs additives have shown to bind to the respective target protein{,} and to promote nucleation and crystal growth without compromising crystal morphology. On the other hand{,} MPs addition led to faster detectable crystal emergence and up to 13 times higher crystallization yield{,} addressing some the challenges in protein crystallization{,} the main bottleneck of macromolecular crystallography. Structure determination of the protein crystallized in the presence of MPs revealed that the structural characteristics of the protein remained unchanged{,} as shown by the superposition with PDB annotated proteins. Moreover{,} and unlike most reported cases{,} it was possible to exclude the inhibitor benzamidine during trypsin crystallisation{,} which is a remarkable result opening new prospects in enzyme engineering and drug design. Our results show that MPs coated with affinity ligands to target proteins can be used as controlled and tailor-made crystallization inducers.

dos Santos, Raquel, Inês Iria, Ana M. Manuel, Ana P. Leandro, Catarina A. C. Madeira, Joao Goncalves, Ana Luísa Carvalho, and Ana Cecília Roque. "Magnetic Precipitation: A New Platform for Protein Purification." Biotechnology JournalBiotechnology Journal. n/a.n/a (2020): 2000151. AbstractWebsite

One of the trends in downstream processing comprises the use of ?anything-but-chromatography? methods to overcome the current downfalls of standard packed-bed chromatography. Precipitation and magnetic separation are two techniques already proven to accomplish protein purification from complex media, yet never used in synergy. With the aim to capture antibodies directly from crude extracts, a new approach combining precipitation and magnetic separation was developed and named as affinity magnetic precipitation. A precipitation screening, based on the Hofmeister series, and a commercial precipitation kit were tested with affinity magnetic particles to assess the best condition for antibody capture from human serum plasma and clarified cell supernatant. The best conditions were obtained when using PEG3350 as precipitant at 4°C for 1h, reaching 80% purity and 50% recovery of polyclonal antibodies from plasma, and 99% purity with 97% recovery yield of anti-TNFα mAb from cell supernatants. These results show that the synergetic use of precipitation and magnetic separation can represent an alternative for the efficient capture of antibodies. This article is protected by copyright. All rights reserved

G., Correia Viviana, Trovão Filipa, Pinheiro Benedita A., Brás Joana L. A., Silva Lisete M., Nunes Cláudia, Coimbra Manuel A., Liu Yan, Feizi Ten, Fontes Carlos M. G. A., Mulloy Barbara, Chai Wengang, Carvalho Ana Luísa, and Palma Angelina S. "Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus." Microbiology SpectrumMicrobiology Spectrum (2021): e01826-21. AbstractWebsite

n/a

Garcia-Alvarez, Begona, Roberto Melero, Fernando M. V. Dias, Jose A. M. Prates, Carlos M. G. A. Fontes, Steven P. Smith, Maria Joao Romao, Ana Luisa Carvalho, and Oscar Llorca. "Molecular Architecture and Structural Transitions of a Clostridium thermocellum Mini-Cellulosome." Journal of Molecular Biology. 407 (2011): 571-580. Abstract
n/a
Ribeiro, Diana O., Aldino Viegas, Virgínia M. R. Pires, João Medeiros-Silva, Pedro Bule, Wengang Chai, Filipa Marcelo, Carlos M. G. A. Fontes, Eurico J. Cabrita, Angelina S. Palma, and Ana Luísa Carvalho. "Molecular basis for the preferential recognition of β1,3-1,4-glucans by the family 11 carbohydrate-binding module from Clostridium thermocellum." The FEBS Journal. 287 (2020): 2723-2743. AbstractWebsite

Understanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the β1,3-linkage are important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of β1,3-1,4-mixed-linked glucans. This is mediated by a conformation–selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. Database Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.

Viegas, Aldino, Natercia F. Bras, Nuno M. F. S. A. Cerqueira, Pedro Alexandrino Fernandes, Jose A. M. Prates, Carlos M. G. A. Fontes, Marta Bruix, Maria Joao Romao, Ana Luisa Carvalho, Maria Joao Ramos, Anjos L. Macedo, and Eurico J. Cabrita. "Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach." Febs Journal. 275 (2008): 2524-2535. Abstract
n/a
Santarsia, Sabrina, Ana Sofia Grosso, Filipa Trovão, Jesús Jiménez-Barbero, Ana Luísa Carvalho, Cristina Nativi, and Filipa Marcelo. "Molecular recognition of a Thomsen-Friedenreich antigen mimetic targeting human galectin-3." ChemMedChem. Aug 9. doi: 10.1002/cmdc.201800525. [Epub ahead of print] (2018). AbstractWebsite

Overexpression of the Thomsen-Friedenreich (TF) antigen in cell membrane proteins occurs in 90% of adenocarcinomas. Additionally, the binding of the TF-antigen to human galectin-3 (Gal-3), also frequently overexpressed in malignancy, promotes cancer progression and metastasis. In this context, structures that interfere with this specific interaction display the potential to prevent cancer metastasis. Herein, a multidisciplinary approach, combining the optimized synthesis of a TF-antigen mimetic with NMR, X-ray crystallography methods and isothermal titration calorimetry assays has been employed to unravel the molecular structural details that govern the Gal-3/TF-mimetic interaction. The TF-mimetic presents a binding affinity for Gal-3 similar to the TF-natural antigen and retains the binding epitope and the bioactive conformation observed for the native antigen. Furthermore, from a thermodynamic perspective a decrease in the enthalpic contribution was observed for the Gal-3/TF-mimetic complex, however this behaviour is compensated by a favourable entropy gain. From a structural perspective, these results establish our TF-mimetic as a scaffold to design multivalent solutions to potentially interfere with Gal-3 aberrant interactions and likely be used to hamper Gal-3-mediated cancer cells adhesion and metastasis.

N
Peixoto, Daniela, Gabriela Malta, Hugo Cruz, Sónia Barroso, Ana Luísa Carvalho, Luísa M. Ferreira, and Paula S. Branco. "N-Heterocyclic Olefin Catalysis for the Ring Opening of Cyclic Amidine Compounds: A Pathway to the Synthesis of ε-Caprolactam- and γ-Lactam-Derived Amines." The Journal of Organic ChemistryThe Journal of Organic Chemistry (2019). AbstractWebsite
n/a
Bras, Joana L. A., Victor D. Alves, Ana Luisa Carvalho, Shabir Najmudin, Jose A. M. Prates, Luis M. A. Ferreira, David N. Bolam, Maria Joao Romao, Harry J. Gilbert, and Carlos M. G. A. Fontes. "Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode." The Journal of biological chemistry. 287 (2012): 44394-405.Website
Kumar, Krishan, Márcia Correia, Virgínia R. Pires, Arun Dhillon, Kedar Sharma, Vikky Rajulapati, Carlos M. G. A. Fontes, Ana Luísa Carvalho, and Arun Goyal. "Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase." International Journal of Biological Macromolecules (2018): -. AbstractWebsite

Abstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of  82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.

P
Freire, Filipe, Maria Joao Romao, Anjos L. Macedo, Susana S. Aveiro, Brian J. Goodfellow, and Ana Luisa Carvalho. "Preliminary structural characterization of human SOUL, a haem-binding protein." Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65 (2009): 723-726. Abstract
n/a
Polino, M., H. S. Rho, M. P. Pina, R. Mallada, AL Carvalho, MJ Romão, Isabel Coelhoso, J. G. E. Gardeniers, J. G. Crespo, and Carla A. M. Portugal. "Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes." Membranes. 11 (2021). AbstractWebsite

Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.

Carvalho, AL, JM Dias, L. Sanz, A. Romero, JJ Calvete, and MJ Romao. "Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma." Acta Crystallographica Section D-Biological Crystallography. 57 (2001): 1180-1183. Abstract

The purification, crystallization and identification by X-ray diffraction analysis of a horse kallikrein is reported. The protein was purired from horse seminal plasma. Crystals belong to space group C2 and the structure was solved by the MIRAS method, with two heavy-atom derivatives of mercury and platinum. X-ray diffraction data to 1.42 Angstrom resolution were collected at the ESRF synchrotron-radiation source.

R
Viciosa, M. T., N. T. Correia, M. Salmeron Sanchez, AL Carvalho, MJ Romao, J. L. Gomez Ribelles, and M. Dionisio. "Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former." Journal of Physical Chemistry B. 113 (2009): 14209-14217. Abstract
n/a
dos Santos, Raquel, Ana Luísa Carvalho, and Cecília A. A. Roque. "Renaissance of protein crystallization and precipitation in biopharmaceuticals purification." Biotechnology Advances (2017): -. AbstractWebsite

Abstract The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

Correia, Viviana G., Benedita A. Pinheiro, Ana Luísa Carvalho, and Angelina S. Palma. "Resistance to Aminoglycosides." Antibiotic Drug Resistance. John Wiley & Sons, Ltd, 2019. 1-38. Abstract

Summary The emergence of bacterial resistance to different antibiotics in clinical use, together with the knowledge on the mechanisms by which bacteria resist the action of aminoglycosides, have contributed to the renewed interest in these molecules as potential antimicrobials. Here, we give an overview on natural and semisynthetic aminoglycosides and their structural features and modes of action, focusing on the structural insight underlying resistance mechanisms. Developments on carbohydrate chemistry and microarray technology are highlighted as powerful approaches toward generation of new aminoglycosides and for screening their interactions with RNAs and proteins. The link between antibiotic uptake and the human gut microbiome is also addressed, focusing on gut microbiome function and composition, antibiotic-induced alterations in host health, and antibiotic resistance. In addition, strategies to modulate human microbiome responses to antibiotics are discussed as novel approaches for aminoglycoside usage and for the effectiveness of antibiotic therapy.

S
Gomes, Ana Sara, Helena Ramos, Sara Gomes, Joana B. Loureiro, Joana Soares, Valentina Barcherini, Paola Monti, Gilberto Fronza, Carla Oliveira, Lucília Domingues, Margarida Bastos, Daniel F. A. R. Dourado, Ana Luísa Carvalho, Maria João Romão, Benedita Pinheiro, Filipa Marcelo, Alexandra Carvalho, Maria M. M. Santos, and Lucília Saraiva. "SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations." 1864.1 (2020): 129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Viegas, Aldino, Joao Sardinha, Filipe Freire, Daniel F. Duarte, Ana L. Carvalho, Carlos M. G. A. Fontes, Maria J. Romao, Anjos L. Macedo, and Eurico J. Cabrita. "Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11)." The Biochemical journal. 451 (2013): 289-300.Website
Pires, Virgínia M. R., Pedro M. M. Pereira, Joana L. A. Brás, Márcia Correia, Vânia Cardoso, Pedro Bule, Victor D. Alves, Shabir Najmudin, Immacolata Venditto, Luís M. A. Ferreira, Maria João Romão, Ana Luísa Carvalho, Carlos M. G. A. Fontes, and Duarte Miguel Prazeres. "Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C." Journal of Biological Chemistry. 292 (2017): 4847-4860. AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Nóbrega, Cláudia S., Ana Luísa Carvalho, Maria João Romão, and Sofia R. Pauleta. "Structural Characterization of Neisseria gonorrhoeae Bacterial Peroxidase—Insights into the Catalytic Cycle of Bacterial Peroxidases." International Journal of Molecular Sciences. 24 (2023). AbstractWebsite

Neisseria gonorrhoeae is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against N. gonorrhoeae.

Bras, Joana L. A., Alan Cartmell, Ana Lusia M. Carvalho, Genny Verze, Edward A. Bayer, Yael Vazana, Marcia A. S. Correia, Jose A. M. Prates, Supriya Ratnaparkhe, Alisdair B. Boraston, Maria J. Romao, Carlos M. G. A. Fontes, and Harry J. Gilbert. "Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis (vol 108, pg 5237, 2011)." Proceedings of the National Academy of Sciences of the United States of America. 108 (2011): 8525. Abstract
n/a
Lima, Carlos D. L., Helena Coelho, Ana Gimeno, Filipa Trovão, Ana Diniz, Jorge S. Dias, Jesús Jiménez-Barbero, Francisco Corzana, Ana Luísa Carvalho, Eurico J. Cabrita, and Filipa Marcelo. "Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins." Chemistry – A European JournalChemistry – A European Journal. n/a.n/a (2021). AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

Archer, M., AL Carvalho, S. Teixeira, I. Moura, JJG Moura, F. Rusnak, and MJ Romao. "Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein." Protein Science. 8 (1999): 1536-1545. Abstract
n/a
Trovão, Filipa, Viviana G. Correia, Frederico M. Lourenço, Diana O. Ribeiro, Ana Luísa Carvalho, Angelina S. Palma, and Benedita A. Pinheiro. "The structure of a Bacteroides thetaiotaomicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome." (2023): 100084. AbstractWebsite

TheBacteroides thetaiotaomicronhas developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RGII depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of themoduleat the C-terminal domain, which we designated BT0996C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical β-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.