Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Carvalho, AL, A. Goyal, JAM Prates, DN Bolam, HJ Gilbert, VMR Pires, LMA Ferreira, A. Planas, MJ Romao, and CMGA Fontes. "The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site." Journal of Biological Chemistry. 279 (2004): 34785-34793. Abstract
n/a
Caseiro, Catarina, Nicholas G. S. McGregor, Victor Diogo Alves, Ana Luísa Carvalho, Maria João Romão, Gideon J. Davies, Carlos M. G. A. Fontes, and Pedro Bule. "Family GH157 enzyme exhibits broad linkage tolerance and a dual endo/exo- β -glucanase activity on β-glucans." (2024): 137402. AbstractWebsite

The structural and chemical diversity of β-glucans is reflected on the variety of essential biological roles tackled by these polysaccharides. This natural heterogeneity requires an elaborate assortment of enzymatic mechanisms to assemble, degrade or modify, as well as to extract their full biotechnological potential. Recent metagenomic efforts have provided an unprecedented growth in potential new biocatalysts, most of which remain unconfirmed or uncharacterized. Here we report the first biochemical and structural characterization of two bacterial β-glucanases from the recently created glycoside hydrolase family 157 (LaGH157 and BcGH157) and investigate their molecular basis for substrate hydrolysis. Structural analysis by X-ray crystallography revealed that GH157 enzymes belong to clan GH-A, possessing a (β/α)8-barrel fold catalytic domain, two β-sandwich accessory domains and two conserved catalytic glutamates residues, with relative positions compatible with a retaining mechanism of hydrolysis. Specificity screening and enzyme kinetics suggest that the enzymes prefer mixed-linkage glucans over β-1,3-glucans. Activity screening showed that both enzymes exhibit pH optimum at 6.5 and temperature optimum for LaGH157 and BcGH157 at 25 °C and 48 °C, respectively. Product analysis with HPAEC-PAD and LC-MS revealed that both enzymes are endo-1,3(4)-β-glucanases, capable of cleaving β-1,3 and β-1,4-linked glucoses, when preceded by a β-1,3 linkage. Moreover, BcGH157 needs a minimum of 4 subsites occupied for hydrolysis to occur, while LaGH157 only requires 3 subsites. Additionally, LaGH157 possesses exohydrolytic activity on β-1,3 and branching β-1,6 linkages. This unusual bifunctional endo-1,3(4)/exo-1,3–1,6 activity constitutes an expansion on our understanding of β-glucan deconstruction, with the potential to inspire future applications.

Santos-Silva, T., J. Trincao, AL Carvalho, C. Bonifacio, F. Auchere, P. Raleiras, I. Moura, JJG Moura, and MJ Romao. "The first crystal structure of class III superoxide reductase from Treponema pallidum." Journal of Biological Inorganic Chemistry. 11 (2006): 548-558. Abstract
n/a
Pinheiro, B. A., J. L. A. Bras, S. Najmudin, AL Carvalho, LMA Ferreira, JAM Prates, and CMGA Fontes. "Flexibility and specificity of the cohesin-dockerin interaction: implications for cellulosome assembly and functionality." Biocatalysis and Biotransformation. 30 (2012): 309-315. AbstractWebsite

Cellulosomes are highly elaborate multi-enzyme complexes of Carbohydrate Active enZYmes (CAZYmes) secreted by cellulolytic microorganisms, which very effectively degrade the most abundant polymers on Earth, cellulose and hemicelluloses. Cellulosome assembly requires that a non-catalytic dockerin module found in cellulosomal enzymes binds to one of the various cohesin domains located in a large molecular scaffold called Scaffoldin. A diversity of cohesin -dockerin binding specificities have been described, the combination of which may result in complex plant cell wall degrading systems, maximising the synergy between enzymes in order to improve catalytic efficiency. Structural studies have allowed the spatial flexibility inherent to the cellulosomal system to be determined. Recent progress achieved from the study of the fundamental cohesin and dockerin units involved in cellulosome assembly will be reviewed.