Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Palma, A. S., Y. Liu, H. Zhang, Y. Zhang, B. V. McCleary, G. Yu, Q. Huang, L. S. Guidolin, A. E. Ciocchini, A. Torosantucci, D. Wang, AL Carvalho, C. M. Fontes, B. Mulloy, R. A. Childs, T. Feizi, and W. Chai. "Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry." Mol Cell Proteomics (2015). AbstractWebsite

Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes including immunomodulation, anti-cancer activities, pathogen virulence and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a glucome microarray, the first sequence-defined glycome-scale microarray, using a designer approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. The negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear homo and hetero and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signalling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.

Peixoto, Daniela, Gabriela Malta, Hugo Cruz, Sónia Barroso, Ana Luísa Carvalho, Luísa M. Ferreira, and Paula S. Branco. "N-Heterocyclic Olefin Catalysis for the Ring Opening of Cyclic Amidine Compounds: A Pathway to the Synthesis of ε-Caprolactam- and γ-Lactam-Derived Amines." The Journal of Organic ChemistryThe Journal of Organic Chemistry (2019). AbstractWebsite
n/a
Pinheiro, B. A., J. L. A. Bras, S. Najmudin, AL Carvalho, LMA Ferreira, JAM Prates, and CMGA Fontes. "Flexibility and specificity of the cohesin-dockerin interaction: implications for cellulosome assembly and functionality." Biocatalysis and Biotransformation. 30 (2012): 309-315. AbstractWebsite

Cellulosomes are highly elaborate multi-enzyme complexes of Carbohydrate Active enZYmes (CAZYmes) secreted by cellulolytic microorganisms, which very effectively degrade the most abundant polymers on Earth, cellulose and hemicelluloses. Cellulosome assembly requires that a non-catalytic dockerin module found in cellulosomal enzymes binds to one of the various cohesin domains located in a large molecular scaffold called Scaffoldin. A diversity of cohesin -dockerin binding specificities have been described, the combination of which may result in complex plant cell wall degrading systems, maximising the synergy between enzymes in order to improve catalytic efficiency. Structural studies have allowed the spatial flexibility inherent to the cellulosomal system to be determined. Recent progress achieved from the study of the fundamental cohesin and dockerin units involved in cellulosome assembly will be reviewed.

Pires, Virgínia M. R., Pedro M. M. Pereira, Joana L. A. Brás, Márcia Correia, Vânia Cardoso, Pedro Bule, Victor D. Alves, Shabir Najmudin, Immacolata Venditto, Luís M. A. Ferreira, Maria João Romão, Ana Luísa Carvalho, Carlos M. G. A. Fontes, and Duarte Miguel Prazeres. "Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C." Journal of Biological Chemistry. 292 (2017): 4847-4860. AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Polino, M., H. S. Rho, M. P. Pina, R. Mallada, AL Carvalho, MJ Romão, Isabel Coelhoso, J. G. E. Gardeniers, J. G. Crespo, and Carla A. M. Portugal. "Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes." Membranes. 11 (2021). AbstractWebsite

Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.

Polino, Mariella, Ana Luı́sa Carvalho, Lina Juknaitė, Carla A. M. Portugal, Isabel M. Coelhoso, Maria João Romão, and João G. Crespo. "Ion-Exchange Membranes for Stable Derivatization of Protein Crystals." Crystal Growth & DesignCrystal Growth & Design (2017). AbstractWebsite
n/a