Publications

Export 575 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
c Olziersky, A.a, Barquinha Vilà Magana Fortunato Morante Martins P. b A. a. "Role of Ga 2O 3-In 2O 3-ZnO channel composition on the electrical performance of thin-film transistors." Materials Chemistry and Physics. 131 (2011): 512-518. AbstractWebsite

In this work we present a study aiming to determine the role of Ga2O3-In2O3-ZnO (GIZO) channel layer composition on the electrical performance and stability exhibited by thin-film transistors (TFTs). The GIZO films were obtained by magnetron sputtering using ceramic targets of different compositions (Ga:In:Zn = 2:2:1, 2:2:2, 2:4:1 and 2:4:2 at.). Structural analysis corroborates the fully amorphous character of the GIZO deposited layers. For the target compositional range used we observe a Zn deficiency on the produced films, which affects the In/Ga atomic concentration ratios. Resistivity and mobility are found to show a general trend against the measured In/Ga ratio that reveals the role played by In and Ga cations on the transport mechanisms. Targets with increased In concentrations (2:4:1 and 2:4:2) allow to obtain the best TFT performances with field effect mobilities reaching values of 53.0 and 51.7cm2 V-1 s-1, respectively. In addition, the In-richer GIZO compositions result in considerably more stable TFTs, especially under positive gate bias stress conditions. Finally, it is verified that by using a target with a slightly lower In atomic composition (2:4:2 in comparison to 2:4:1), good stability and mobility can be achieved with potentially lower material costs.© 2011 Elsevier B.V. All rights reserved.

P
Panigrahi, S., Calmeiro Martins Nunes Fortunato T. R. D. "Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell." ACS Nano. 10 (2016): 6139-6146. AbstractWebsite

The charge transfer dynamics at interfaces are fundamental to know the mechanism of photovoltaic processes. The internal potential in solar cell devices depends on the basic processes of photovoltaic effect such as charge carrier generation, separation, transport, recombination, etc. Here we report the direct observation of the surface potential depth profile over the cross-section of the ZnO nanorods/Cu2O based solar cell for two different layer thicknesses at different wavelengths of light using Kelvin probe force microscopy. The topography and phase images across the cross-section of the solar cell are also observed, where the interfaces are well-defined on the nanoscale. The potential profiling results demonstrate that under white light illumination, the photoinduced electrons in Cu2O inject into ZnO due to the interfacial electric field, which results in the large difference in surface potential between two active layers. However, under a single wavelength illumination, the charge carrier generation, separation, and transport processes between two active layers are limited, which affect the surface potential images and corresponding potential depth profile. Because of changes in the active layer thicknesses, small variations have been observed in the charge carrier transport mechanism inside the device. These results provide the clear idea about the charge carrier distribution inside the solar cell in different conditions and show the perfect illumination condition for large carrier transport in a high performance solar cell. © 2016 American Chemical Society.

Parthiban, S.a, Gokulakrishnan Ramamurthi Elangovan Martins Fortunato Ganesan V. a K. a. "High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications." Solar Energy Materials and Solar Cells. 93 (2009): 92-97. AbstractWebsite

Molybdenum-doped indium oxide (IMO) thin films were deposited at 450 °C for varying molybdenum concentrations in the range of 0.5-2 at% by the spray pyrolysis technique. These films confirmed the cubic bixbyite structure of polycrystalline In2O3. The preferred growth orientation along the (2 2 2) plane shifts to (4 0 0) on higher Mo doping levels. The films doped with 0.5 at% Mo showed high mobility of 76.9 cm2/(V s). The high visible transmittance extends well into the near-infrared region. A possibility of using the produced IMO films in nanocrystalline (nc) silicon solar cell applications is discussed in this article. The morphological studies showed a change in the microstructure, which is consistent with the change in crystallographic orientation. © 2008 Elsevier B.V. All rights reserved.

Parthiban, S., Elangovan Nayak Gonçalves Nunes Pereira Barquinha Busani Fortunato Martins E. P. K. "Performances of microcrystalline zinc tin oxide thin-film transistors processed by spray pyrolysis." IEEE/OSA Journal of Display Technology. 9 (2013): 825-831. AbstractWebsite

In this work, we report results concerning the performances of thin-film transistors (TFTs) where the channel layer is based on microcrystalline zinc tin oxide (ZTO) processed by spray pyrolysis technique. TFTs made with 30 nm thick ZTO channel layer deposited at a substrate temperature of 400 C and 300 Cexhibited, respectively, a saturation mobility of 2.9 cm V s and 1.45 cm V s ; voltage of 0.15 V, and 0.2 V; a sub-threshold swing of 400 mV/dec and 500 mV/dec; ON/OFF ratio at the onset of hard saturation current of 3.5 10 and 6 10 , for a drain to source voltage of 10 V (close to or below the gate to source voltage). This indicates that the substrate temperature is relevant in determining the devices' electronic performances. © 2013 IEEE.

Parthiban, S.a b, Elangovan Ramamurthi Kanjilal Asokan Martins Fortunato E. b K. a. "Effect of Li3+ heavy ion irradiation on the Mo doped In2O3 thin films prepared by spray pyrolysis technique." Journal of Physics D: Applied Physics. 44 (2011). AbstractWebsite

The high visible-near infrared transparent and high carrier mobility (μ) Mo doped (0.5 at%) indium oxide (IMO) films were deposited by the spray pyrolysis technique. The deposited films were irradiated by 50MeV Li 3+ ions with different fluences of 1×1011, 1×1012 and 1×1013 ions cm-2. X-ray diffraction analysis confirmed the cubic bixbyite structure of indium oxide. A fascinating feature is that the ion irradiation process has introduced a fraction of the molybdenum oxide phase. The μ of as-deposited IMO films is decreased from ̃122.4 to 93.3 cm2 V-1 s-1, following the ion irradiation. The theoretically calculated μ and carrier density values were correlated with those measured experimentally. The transport mechanism has been analysed based on the ionized and neutral impurity scattering centres. The average transmittance (400-2500 nm) of the as-deposited IMO films is decreased from 83% to 60% following irradiation. © 2011 IOP Publishing Ltd.

Parthiban, S.a, Ramamurthi Elangovan Martins Fortunato K. a E. b. "Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility." Applied Physics Letters. 94 (2009). AbstractWebsite

Molybdenum doped (0-1 at. %) indium oxide thin films with high near infrared (NIR) transparency and carrier mobility were deposited on Corning-1737 glass substrates at 400 °C by spray pyrolysis experimental technique. Films with mobility as high as ∼149 cm2 /V s were obtained when annealed in vacuum at 550 °C, which also possess carrier concentration of ∼1× 1020 cm-3 and resistivity as low as ∼4.0× 10-4 cm. Further, both the average visible transmittance (500-800 nm) and the average NIR transmittance are >83%. This clearly shows that the transmittance is extended well into the NIR region. © 2009 American Institute of Physics.

c Parthiban, S.a b, Gokulakrishnan Elangovan Gonçalves Ramamurthi Fortunato Martins V. a E. b. "High mobility and visible-near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis." Thin Solid Films. 524 (2012): 268-271. AbstractWebsite

This paper deals with high transparent and high conductive oxides based on polycrystalline titanium (Ti) doped (0.5-3 at.%) indium oxide (IO) thin films produced on glass substrates at 400 °C by spray pyrolysis technique. X-ray diffraction analysis confirmed the cubic bixbyite structure of indium oxide. A high mobility of ∼ 97 cm2 V- 1 s- 1, a carrier concentration of ∼ 1.55 × 1020 cm- 3 and a resistivity of ∼ 4.11 × 10- 4 Ω-cm with ∼ 83% of transmittance in the wavelength ranging between 400 and 2500 nm were obtained for 2 at.% Ti doping films, rivalling so to the best known transparent conducting oxide based on indium tin oxide. Moreover, the transmittance in the broad wavelength ranging between 400 and 2500 nm is over 83%, leading so to an increasing carrier generation towards the near infrared region of the spectrum, as required for applications such as solar cells. We also notice that increasing the doping concentration widened the optical band gap and caused a small Burstein-Moss shift, due to mobility decrease, as expected. © 2012 Published by Elsevier B.V.

Parthiban, S.a, Elangovan Ramamurthi Goncalves Martins Fortunato E. b K. a. "Structural, optical and electrical properties of indium-molybdenum oxide thin films prepared by spray pyrolysis." Physica Status Solidi (A) Applications and Materials Science. 207 (2010): 1554-1557. AbstractWebsite

Molybdenum doped indium oxide (IO) thin films were deposited on the Coring F1737 glass substrates at 400 °C by spray pyrolysis technique. TheModoping was varied between 0 and 4 at.%. The films were characterized by their structural, electrical and optical properties. The films are confirmed to be cubic bixbyite In 2O 3 with a strongest orientation along (222) for 0.5 at.% Mo, which is shifted to (400) plane when the Mo doping is increased to ≥1.2 at.%. The films deposited with 0.5 at.% Mo showed high mobility of ̃90 cm 2/Vs, resistivity of ̃6.8×10 -4ωcm and carrier concentration of ̃1.01× 1020 cm -3 with >̃73% transmittance in the visible range between 500 and 800 nm. The transmittance is well extended into near infrared region.

Parthiban, S.a, Elangovan Ramamurthi Martins Fortunato E. b K. a. "Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique." Solar Energy Materials and Solar Cells. 94 (2010): 406-412. AbstractWebsite

High visible to near infrared (NIR) transparent Mo (0-1 at%) doped In2O3 (IMO) thin films with high carrier mobility were deposited on Corning-1737 glass substrates at 400 °C by spray pyrolysis experimental technique. The films were annealed in vacuum (∼1×10-4 mbar) at 550 °C for 45 min. XRD analysis confirmed that indium oxide belongs to cubic bixbyite structure. The preferred growth orientation along (2 2 2) plane for low Mo doping level shifts to (4 0 0) for higher Mo doping levels. Crystallite sizes extracted from the XRD data corroborate the changes in full-width at half-maximum due to the variation in Mo doping. Scanning electron microscopy study illustrates the evolution in surface microstructures as a function of Mo doping. The negative sign of Hall coefficient confirmed n-type conductivity. Films with high mobility of ∼149 cm2/(V s), carrier concentration of ∼1.0×1020 cm-3, resistivity of ∼4.0×10-4 Ω cm and high figure of merit of ∼1.02×10-2 Ω-1 were observed for post-annealed films (0.5 at% Mo). The obtained high average transparency of ∼83% in the wavelength range 400-2500 nm confirms that transmittance is well extended into the NIR region. © 2009 Elsevier B.V. All rights reserved.

Parthiban, S.a, Ramamurthi Elangovan Martins Fortunato Ganesan K. a E. b. "High-mobility molybdenum doped indium oxide thin films prepared by spray pyrolysis technique." Materials Letters. 62 (2008): 3217-3219. AbstractWebsite

Molybdenum doped indium oxide (IMO) thin films were deposited on the glass substrates preheated to 450 °C by spray pyrolysis technique. The Mo doping was varied between 0 and 2.0 at.%. The films were characterized by their structural, electrical and optical properties. The films are confirmed to be cubic bixbyite In2O3 with a strongest orientation along (222) plane, which is shifted to (400) plane for the increase in Mo doping to 1.25 and 2 at.%. The film deposited with 0.5 at.% Mo doping shows high mobility of 76.9 cm2V- 1s- 1 , resistivity of 1.8 × 10- 3 Ω-cm and high carrier concentration of 4.6 × 1019 cm- 3 with 81.3% transmittance in the visible range between 500 and 800 nm. Further, the transparency extents well into the near-IR range. © 2008 Elsevier B.V. All rights reserved.

Parthiban, S.a, Elangovan Ramamurthi Martins Fortunato E. b K. a. "High near-infrared transparency and carrier mobility of Mo doped In2 O 3 thin films for optoelectronics applications." Journal of Applied Physics. 106 (2009). AbstractWebsite

Molybdenum (0-1 at. %) doped indium oxide thin films with high near-infrared (NIR) transparency and high carrier mobility were deposited on Corning-1737 glass substrates at 400 °C by a spray pyrolysis experimental technique. X-ray diffraction (XRD) analysis confirmed the cubic bixbyite structure of indium oxide. The preferred growth orientation along the (222) plane for the low Mo doping level (0.5 at. %) shifts to (400) for higher Mo doping levels (<0.6 at. %). The crystallite size extracted from the XRD data corroborates the changes in full width at half maximum due to the variation in Mo doping. A scanning electron microscopy study illustrated the evolution in the surface microstructure as a function of Mo doping. The negative sign of the Hall coefficient confirmed the n -type conductivity. A high carrier mobility of ∼122.4 cm2 /V s, a carrier concentration of ∼9.5× 1019 cm-3, a resistivity of ∼5.3× 10-4cm, and a high figure of merit of ∼4.2× 10-2 -1 are observed for the films deposited with 0.5 at. % Mo. The obtained high average transparency of ∼83% in the wavelengths ranging from 400 to 2500 nm confirmed the extension of transmittance well into the NIR region. © 2009 American Institute of Physics.

Paula, A.S., Canejo Martins Braz Fernandes J. P. H. G. "Effect of thermal cycling on the transformation temperature ranges of a Ni-Ti shape memory alloy." Materials Science and Engineering A. 378 (2004): 92-96. AbstractWebsite

Shape memory alloys (SMA) represents a class of metallic materials that has the capability of recovering a previously defined initial shape when subject to an adequate thermomechanical treatment. The present work aims to study the influence of thermal cycles on the transition temperatures of a Ni-Ti alloy. In this system, small variations around the equiatomic composition give rise to significant transformation temperature variations ranging from 173 to 373 K. SMA usually presents the shape memory effect after an annealing treatment at ca. 973 K. The optimisation of the thermomechanical treatment will allow to "tune" the material to different transformation temperature ranges from the same starting material, just by changing the processing conditions. Differential scanning calorimeter (DSC) and in situ high-temperature X-ray diffraction (XRD) have been used to identify the transformation temperatures and the phases that are present after different thermal cycles. The results concerning a series of thermal cycles with different heating and cooling rates (from 1.67×10-2 to 1.25×10-1 K/s) and different holding temperatures (from 473 to 1033 K) are presented. © 2004 Elsevier B.V. All rights reserved.

Pavan, M.a, Rühle Ginsburg Keller Barad Sberna Nunes Martins Anderson Zaban Fortunato S. b A. b. "TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis." Solar Energy Materials and Solar Cells. 132 (2015): 549-556. AbstractWebsite

Here we present for the first time a TiO2/Cu2O all-oxide heterojunction solar cell entirely produced by spray pyrolysis onto fluorine doped tin oxide (FTO) covered glass substrates, using silver as a back contact. A combinatorial approach was chosen to investigate the impact of the TiO2 window layer and the Cu2O light absorber thicknesses. We observe an open circuit voltage up to 350 mV and a short circuit current density which is strongly dependent of the Cu2O thickness, reaching a maximum of  0.4 mA/cm2. Optical investigation reveals that a thickness of 300 nm spray pyrolysis deposited Cu2O is sufficient to absorb most photons with an energy above the symmetry allowed optical transition of 2.5 eV, indicating that the low current densities are caused by strong recombination in the absorber that consists of small Cu2O grains. © 2014 Elsevier Ltd. All rights reserved.

Pei, Z.L.a, Pereira Goņalves Barquinha Franco Alves Rego Martins Fortunato L. a G. a. "Room-temperature cosputtered HfO2 - Al2 O3 multicomponent gate dielectrics." Electrochemical and Solid-State Letters. 12 (2009): G65-G68. AbstractWebsite

Hafnium oxide-aluminum oxide (HfAlO) dielectric films were cosputtered using HfO2 and Al2 O3 targets, and their properties are studied in comparison with pure HfO2 films. The X-ray diffraction studies confirmed that the HfO2 films are nanocrystalline with a monoclinic phase. The as-deposited HfAlO films with a chemical composition of (HfO2) 0.86 (Al2 O3) 0.14 are amorphous even after annealing at 500°C. Further, the cosputtered films show a slight reduction in leakage current. The leakage current density may be significantly reduced below 3× 10-10 A cm-2 at an electric field of 0.25 MV/cm when applying the proper radio-frequency bias to the substrate. © 2009 The Electrochemical Society.

e d Pereira, F.M.a b, Bernacka-Wojcik Ribeiro Lobato Fortunato Martins Igreja Jorge Águas Oliva I. a R. S. "Hybrid microfluidic platform for multifactorial analysis based on electrical impedance, refractometry, optical absorption and fluorescence." Micromachines. 7 (2016). AbstractWebsite

This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i) impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii) simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii) fluorescence-based bead counting. © 2016 by the authors.

Pereira, L., Águas Gomes Barquinha Fortunato Martins H. L. P. "Nanostructured silicon based thin film transistors processed in the plasma dark region." Journal of Nanoscience and Nanotechnology. 10 (2010): 2938-2943. AbstractWebsite

Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm 2 V -1S -1, threshold voltage around 2 V, on/off ratio above 10 7 and sub-threshold slope below 0.5 V/decade, depending on the dielectric used. Copyright © 2010 American Scientific Publishers All rights reserved.

Pereira, L.a, Barquinha Gonçalves Vilà Olziersky Morante Fortunato Martins P. a G. a. "Sputtered multicomponent amorphous dielectrics for transparent electronics." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2149-2154. AbstractWebsite

In this work, we present the structural and electrical properties of HfO 2, HfO 2 +SiO 2, and HfO 2 +Al 2O 3 dielectric composite layers deposited by sputtering without any intentional substrate heating. The films were deposited on glass and 〈100〉 crystalline silicon (c-Si) substrates from ceramic targets by using argon (Ar) and oxygen (O 2) as sputtering and reactive gases, respectively. The incorporation of SiO 2 and Al 2O 3 into hafnia was obtained by co-sputtering and itwas controlled by adjusting the ratio of r.f. power applied between the targets. The HfO 2 films present a microcrystalline structure, when deposited at room temperature (RT). The lowest leakage current in c-Si MIS (Metal-Insulator- Semiconductor) structures (below 10 9A/cm 2 at 10V on films with a thickness around 180 nm) was obtained for an Ar/O 2 ratio of 14:1 sccm, and further increase in O 2 flow does not enhance the electrical characteristics. The codeposition of SiO 2 or Al 2O 3 with hafnia has a strong influence on the structure of the resulting films since they become amorphous. The leakage current in MISstructures incorporating these multi-component dielectrics is reduced at least by a factor of 2, which is accompanied by an increase on the band gap. The dielectric constant is decreased due to the lower values for SiO 2 and Al 2O 3. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Low temperature processed hafnium oxide: Structural and electrical properties." Materials Science in Semiconductor Processing. 9 (2006): 1125-1132. AbstractWebsite

In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from -2.23 to -1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm-2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being -2.96 V and 1.64×1012 cm-2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the C-V plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties. © 2006 Elsevier Ltd. All rights reserved.

Pereira, L.a, Águas Beckers Martins Fortunato Martins H. a M. b. "Spectroscopic ellipsometry study of nickel induced crystallization of a-Si." Journal of Non-Crystalline Solids. 352 (2006): 1204-1208. AbstractWebsite

The aim of this work is to present a spectroscopic ellipsometry study focused on the annealing time effect on nickel metal induced crystallization of amorphous silicon thin films. For this purpose silicon layers with 80 and 125 nm were used on the top of which a 0.5 nm Ni thick layer was deposited. The ellipsometry simulation using a Bruggemann Effective Medium Approximation shows that films with 80 nm reach a crystalline fraction of 72% after 1 h annealing, appearing to be full crystallized after 2 h. No significant structural improvement is detected for longer annealing times. On the 125 nm samples the crystalline volume fraction after 1 h is only around 7%, requiring 5 h to get a similar crystalline fraction than the one achieved with the thinner film. This means that the time required for full crystallization will be strongly determined by the Si layer thickness. Using a new fitting approach the Ni content within the films was also determined by SE and related to the silicon film thickness. © 2006 Elsevier B.V. All rights reserved.

Pereira, L.a, Águas Vilarinho Fortunato Martins H. a P. b. "Metal induced crystallization: Gold versus aluminium." Journal of Materials Science. 40 (2005): 1387-1391. AbstractWebsite

In this work metal induced crystallization was studied using aluminium and gold deposited over 150 nm amorphous silicon films grown by LPCVD. Aluminium and gold layers with thickness between 1 and 5 nm were deposited on the silicon films and after that, the samples were annealed at 500°C from 5 up to 30 h. When the crystallization is induced through a gold layer, the Si crystalline fraction is higher than when using aluminium. For samples crystallized for 30 h at 500°C with 2 nm of metal a crystalline fraction of 57.5% was achieved using gold and only 38.7% when using aluminium. © 2005 Springer Science + Business Media, Inc.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Electrical performances of low temperature annealed hafnium oxide deposited at room temperature." Materials Science Forum. 514-516 (2006): 58-62. AbstractWebsite

In this work, HfO2 was deposited by r.f. sputtering at room temperature and then annealed for different times at 200°C in a forming gas atmosphere. After annealing for 2 hours the HfO2 layers present a reduction on the flat band voltage of about 1 V, relatively to the as deposited film, decreasing from -2.23V down to -1.28 V. This means an improvement of the interface properties and a reduction on the oxide charge density from 1.33×1012 cm-2 to 7.62×1011 cm -2. The dielectric constant reaches a maximum of 18.3 after 5h annealing due to film's densification. When annealing for longer times such as 10h a small degradation of the electrical properties is observed. After 10h annealing the dielectric constant, flat band voltage and fixed charge density are respectively, 14.9, -2.96 V and 1.64×1012 cm-2 and the leakage current also increases due to film's crystallization.

Pereira, L., Águas Igreja Martins Nedev Raniero Fortunato Martins H. R. R. "Sputtering preparation of silicon nitride thin films for gate dielectric applications." Materials Science Forum. 455-456 (2004): 69-72. AbstractWebsite

Silicon nitride films were produced on glass and crystalline silicon substrates using r.f. magnetron sputtering to select the best process conditions (substrate temperature, gas pressure and r.f. power) to grow dielectrics for device applications such as low temperature thin film transistors, where special care has to be taken concerning the film's compactness and bulk defects. The films produced were analysed by different techniques such as ultra violet - visible - near infrared spectroscopy Fourier transformed infrared spectroscopy and capacitance measurements, aiming to correlate the films properties with its composition and degree of compactness. The role of the deposition pressure is notorious since films deposited at high pressures are more compact, presenting low oxygen incorporation after deposition. The increase of the substrate temperature up to 373 °K has the same effect, not changing the film's amorphous structure. These data will be discussed aiming to produce films with the required compactness and stoichiometry to grow very thin insulating layers (<10 nm) to be used in MIS structures or devices like thin film transistors.

Pereira, L.a, Águas Martins Vilarinho Fortunato Martins H. a R. M. "Polycrystalline silicon obtained by metal induced crystallization using different metals." Thin Solid Films. 451-452 (2004): 334-339. AbstractWebsite

The aim of this paper is to study the role of different metals (aluminium, molybdenum, nickel and titanium) in inducing crystallization in films produced by LPCVD at high and low temperature processes and to compare the structural, morphological, optical and electrical properties of the various films produced. This work envisages the use of the most suitable conditions that lead to the production of films for optoelectronic applications such as solar cells. © 2003 Elsevier B.V. All rights reserved.

Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films. 511-512 (2006): 275-279. AbstractWebsite

This work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.

Pereira, L.a, Brida Fortunato Ferreira Águas Silva Costa Teixeira Martins D. a E. a. "a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates." Journal of Non-Crystalline Solids. 299-302 (2002): 1289-1294. AbstractWebsite

In this paper we present results concerning the optimisation of the electronic and mechanical properties presented by amorphous silicon (a-Si:H) thin films produced on polyimide (Kapton® VN) substrates with different thicknesses (25, 50 and 75 μm) by the plasma enhanced chemical vapour deposition (PECVD) technique. The purpose of this study is to obtain a low defect density as well as low residual stresses (specially at the interface) in order to provide good performances for large area (10 mm wide by 80 mm long) flexible position sensitive detectors. The electrical and optical properties presented by the films will be correlated to the sensor characteristics. The properties of samples have been measured by dark/photoconductivity, constant photocurrent measurements (CPM) and the results have been compared with films deposited on Corning 7059 glass substrates during the same run deposition. The residual stresses were measured using an active optical triangulation and angle resolved scattering. The preliminary results indicate that the thinner polymeric substrate with 25 μm presents the highest density of states, which is associated to the residual stresses and strains associated within the film. © 2002 Elsevier Science B.V. All rights reserved.