Publications

Export 132 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Figueiredo, V.a, Elangovan Gonçalves Franco Alves Park Martins Fortunato E. a G. a. "Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2143-2148. AbstractWebsite

Copper oxide thin films were obtained by annealing (temperature ranging between 100 and 450 °C) the metallic Cu films deposited on glass substrates by e-beam evaporation. XRD studies confirmed that the cubic Cu phase of the asdeposited films changes into single cubic Cu 2Ophase and single monoclinic CuO phase, depending on the annealing conditions. The crystallite size is varied betweeñ12 and 31 nm. The lattice parameters of cubic Cu and Cu 2Ophases are estimated tõ3.60 and ̃4.26 Å , respectively. The films with Cu 2O phase showed p-type characteristics. The conductivity is decreased linearly with the decreasing temperature (1/T), which has confirmed the semiconductor nature of the deposited films. The calculated activation energy is varied between 0.10 and 0.16 eV. The surface microstructure is changed depending on the variation in the annealing temperature. The poor transmittance of the asdeposited films (<1%) is increased to a maximum of ̃80% (800 nm) on annealing at 200 °C. The estimated direct allowed band gap is varied between 1.73 and 2.89 eV. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figueiredo, V.a, Elangovan Gonçalves Barquinha Pereira Franco Alves Martins Fortunato E. a G. a. "Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper." Applied Surface Science. 254 (2008): 3949-3954. AbstractWebsite

Thin films of copper oxide were obtained through thermal oxidation (100-450 °C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 °C showed mixed Cu-Cu2O phase, whereas those annealed between 200 and 300 °C showed a single cubic Cu2O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 °C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu2O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of ∼80% (800 nm) on annealing at 200 °C. The direct allowed band gap is varied between 2.03 and 3.02 eV. © 2008 Elsevier B.V. All rights reserved.

b b b b b Figueiredo, V.a b, Pinto Deuermeier Barros Alves Martins Fortunato J. V. a J. "P-Type CuxO thin-film transistors produced by thermal oxidation." IEEE/OSA Journal of Display Technology. 9 (2013): 735-740. AbstractWebsite

Thin-films of copper oxide Cu O were produced by thermal oxidation of metallic copper (Cu) at different temperatures (150-450 C). The films produced at temperatures of 200, 250 and 300 C showed high Hall motilities of 2.2, 1.9 and 1.6 cm V s , respectively. Single Cu O phases were obtained at 200 C and its conversion to CuO starts at 250 C. For lower thicknesses 40 nm, the films oxidized at 250 C showed a complete conversion to CuO phase. Successful thin-film transistors (TFTs) were produce by thermal oxidation of a 20 nm Cu film, obtaining p-type Cu O (at 200 C) and CuO (at 250 C) with On/Off ratios of 6 10 and 1 10 , respectively. © 2005-2012 IEEE.

b b b b Filonovich, S.A.a, Águas Bernacka-Wojcik Gaspar Vilarigues Silva Fortunato Martins H. a I. b. "Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure." Vacuum. 83 (2009): 1253-1256. AbstractWebsite

In this paper we present a study of boron-doped nc-Si:H films prepared by PECVD at high deposition pressure (≥4 mbar), high plasma power and low substrate temperature (≤200 °C) using trimethylboron (TMB) as a dopant gas. The influence of deposition parameters on electrical, structural and optical properties is investigated. We determine the deposition conditions that lead to the formation of p-type nanocrystalline silicon thin films with very high crystallinity, high value of dark conductivity (>7 (Ω cm)-1) and high optical band gap (≥1.7 eV). Modeling of ellipsometry spectra reveals that the film growth mechanism should proceed through a sub-surface layer mechanism that leads to silicon crystallization. The obtained films are very good candidates for application in amorphous and nanocrystalline silicon solar cells as a p-type window layer. © 2009 Elsevier Ltd. All rights reserved.

Filonovich, S.A.a, Águas Busani Vicente Araújo Gaspar Vilarigues Leitão Fortunato Martins H. a T. a. "Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH 3) 3." Science and Technology of Advanced Materials. 13 (2012). AbstractWebsite

We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. © 2012 National Institute for Materials Science.

Fortunate, E., Gonçalves De Carvalho Pimentel Lavareda Marques Martins A. C. N. "Enhancement of the electrical properties of ITO deposited on polymeric substrates by using a ZnO buffer layer." Materials Research Society Symposium Proceedings. Vol. 814. 2004. 231-236. Abstract

In this paper we present the effect of the insertion of a non-doped nanocrystalline zinc oxide/buffer layer on the electrical, optical and structural properties of indium tin oxide produced at room temperature by radio frequency plasma enhanced reactive thermal evaporation on polymeric substrates. The electrical resistivity of the ITO films is reduced by more than two orders of magnitude (4.5×10-1 to 2.9×10-3 Ωcm). From the Hall effect measurements it is observed that the large decrease associated to the electrical resistivity, is due to the increase associated to the Hall mobility. Concerning the optical properties no effect was observed, being the transmittance in the visible and near the infra red region always higher than 80%.

Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature." Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230. Abstract

Gallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.

Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon." Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217. AbstractWebsite

In this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.

Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 140-145. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×102 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2001 Materials Research Society.

Fortunato, E., Martins R. "How materials innovations will lead to device revolution?" 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015. 2015. 884-887. Abstract

Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. The key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive component but also as active component, similar to what we observe in conventional semiconductors like silicon. In this paper we present the recent progress in n- and p-type oxide based thin film transistors (TFT) produced by rf magnetron sputtering and we will summarize the major milestones already achieved with this emerging and very promising technology. © 2015 IEEE.

Fortunato, E., Pereira Barquinha Ferreira Prabakaran Gonçalves Gonçalves Martins L. P. I. "Oxide semiconductors: Order within the disorder." Philosophical Magazine. 89 (2009): 2741-2758. AbstractWebsite

The effect is considered of order and disorder on the electrical and optical performance of ionic oxide semiconductors used to produce optoelectronic devices such as p-n heterojunction solar cells and thin-film transistors (TFTs). The results obtained show that p-type c-Si/a-IZO/poly-ZGO solar cells exhibit efficiencies above 14% in device areas of about 2.34 cm2, whereas amorphous oxide TFTs based on the Ga-Zn-Sn-O system demonstrate superior performance to the polycrystalline ZnO TFTs, with ION/I OFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2 V-1 s-1. In addition, preliminary data on a p-type oxide TFT based on the Zn-Cu-O system are presented. © 2009 Taylor & Francis.

Fortunato, E.a, Lavareda Vieira Martins Ferreira G. a M. a. "Application of thin film technology to optical sensors." Vacuum. 45 (1994): 1151-1154. AbstractWebsite

In this paper we present results of PIN single and dual axis Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H) technology, with a wide detection area (up to 80 × 80 mm). These sensors provide an alternative to Charge Coupled Devices (CCDs) when large inspection areas are needed, under a requirement to use simpler technology. In this paper we analyse the forward and reverse I-V characteristics in the dark and under illumination, as well as the device linearity of TFPSD. © 1994.

Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Multicomponent wide band gap oxide semiconductors for thin film transistors." Proceedings of International Meeting on Information Display. Vol. 2006. 2006. 605-608. Abstract

The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 106 are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around 25 cm2/Vs, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E.a, Teodoro Silva Ferreira Nunes Guimarães Soares Giuliani Popovic Brener Martins P. a V. a. "Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 80 (2000): 765-774. AbstractWebsite

The aim of this work is to determine the role of different metal contacts on the performances of one-dimensional thin-film position-sensitive detectors produced by plasma-enhanced chemical vapour deposition, to be used in optical rulers for alignment applications. The device consists on an indium tin oxide/p-i-n structure where the metal contacts used were based on Al, Al + Cu and Ag. The results achieved show that the contact mainly influences the final sensor range by limiting the magnitude of the analogue signals recorded. In spite of soldering problems the Al contact was the contact that lead to better discrimination of the sensor, with a nonlinearity of ±0.8% and a fall-off parameter of 3.2 × 10-3 cm-1. The Al + Cu contact also exhibits good performances (nonlinearity, of ±1.1%; fall-off parameter, 1.4 × 10-2 cm-1) and should be chosen since it is much easier to solder but requires protection against oxidation. The integration of these sensors on the optical ruler lead to the production of a system with a response time below 0.5 ms, an accuracy better than ±1% and a mechanical precision of better than 0.25 mm in 100 mm, with a full-scale noise below ±0.1%.

b Fortunato, E.a, Figueiredo Barquinha Elamurugu Barros Goņalves Park Hwang Martins V. a P. a. "Erratum: Thin-film transistors based on p-type Cu2 O thin films produced at room temperature (Applied Physics Letters (2010) 96 (192102))." Applied Physics Letters. 96 (2010). AbstractWebsite
n/a
Fortunato, E., Barquinha Pimentel Gonçalves Pereira Marques Martins P. A. A. "Next generation of thin film transistors based on zinc oxide." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 347-352. Abstract

We report high performance ZnO thin film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a field effect mobility of 28 cm2/Vs, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics.

Fortunato, E., Gonçalves Assunção Marques Águas Pereira Ferreira Martins A. V. A. "Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence." Thin Solid Films. 442 (2003): 121-126. AbstractWebsite

In this paper, we present results concerning the thickness dependence (from 70 to 890 nm) of electrical, structural, morphological and optical properties presented by gallium-doped zinc oxide (GZO) deposited on polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. For thicknesses higher than 300 nm an independent correlation between the electrical, morphological, structural and optical properties are observed. The lowest resistivity obtained was 5 × 10-4 Ω cm with a sheet resistance of 15 Ω/□ and an average optical transmittance in the visible part of the spectra of 80%. It is also shown that by passivating the surface of the polymer by depositing a thin silicon dioxide layer the electrical and structural properties of the films are improved nearly by a factor of two. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E., Ferreira Giuliani Martins I. F. R. "Flexible large area thin film position sensitive detectors." Sensors and Actuators, A: Physical. 86 (2000): 182-186. AbstractWebsite

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma-enhanced chemical vapour deposition. The sensors have been characterized by spectral response, light intensity dependence and linearity measurements in a bent state in order to evaluate the properties in real working conditions. The obtained one-dimensional (1D) position sensors with 10 mm width and 20 mm length present a non-linearity of ±1% which are comparable to the ones produced on glass substrates.

Fortunato, E., Malik Martins A. R. "Thin oxide interface layers in a-Si:H MIS structures." Journal of Non-Crystalline Solids. 227-230 (1998): 1230-1234. AbstractWebsite

Pd-metal/insulator/semiconductor based on hydrogenated amorphous silicon were produced by plasma enhanced chemical vapour deposition with two different oxidised surfaces: thermal in ambient air and chemical with hydrogen peroxide. The diode characteristics have been investigated using dark and light current as f(v) measurements in the temperature range from 300 K to 380 K, from which it was possible to infer the electron barrier height. The data obtained show that the incorporation of a thin insulator layer between the semiconductor and the metal improves the performances of the devices by preventing the formation of suicides at the interface. Apart from that we also show that the MIS structures with the thermal oxide presents 'better' performances than the ones with the chemical oxide due to the type of interface states and of the oxide charges associated with the interface between the insulator and the semiconductor. © 1998 Elsevier Science B.V. All rights reserved.

Fortunato, E.M.C.a, Pereira Barquinha Botelho Do Rego Goņalves Vil̀ Morante Martins L. M. N. a. "High mobility indium free amorphous oxide thin film transistors." Applied Physics Letters. 92 (2008). AbstractWebsite

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of postannealing temperatures (200, 250, and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature (S1) and 150 °C (S2) during the channel deposition. From the results, it was observed that the effect of postannealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs (WL=5050 μm) operate in the enhancement mode (n -type), present a high saturation mobility of 24.6 cm2 V s, a subthreshold gate swing voltage of 0.38 V /decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V, and an Ion Ioff ratio of 8× 107, satisfying all the requirements to be used as active-matrix backplane. © 2008 American Institute of Physics.

Fortunato, E.a, Gonçalves Marques Viana Águas Pereira Ferreira Vilarinho Martins A. a A. a. "New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering." Surface and Coatings Technology. 180-181 (2004): 20-25. AbstractWebsite

Gallium-doped zinc oxide (GZO) thin films have been deposited onto polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. The influence of the film thickness (from 70 to 890 nm) on the electrical, structural and morphological properties are presented. The lowest resistivity obtained was 5 × 10-4 Ω cm with a Hall mobility of 13.7 cm2/Vs and a carrier concentration of 8.6 × 1020 cm-3. These values were obtained by passivating the surface of the polymer with a thin silicon dioxide, so preventing the moisture and oxygen permeation inside the film. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E., Lavareda Scares Martins G. F. R. "Performances presented by large-area thin film position-sensitive detectors based on amorphous silicon." Thin Solid Films. 272 (1996): 148-156. AbstractWebsite

This paper presents a low-cost technology for the realisation of large-area thin film position-sensitive detectors using the a-Si:H technology. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems, such as: machine tool alignment and control; angle measuring; rotation monitoring; surface profiling; medical instrumentation; targeting; remote optical alignment; guidance systems; etc., to which automated inspection control is needed.

Fortunato, E.a, Pereira Barquinha Botelho Do Rego Gongalves Vilà Morante Martins L. a P. a. "High mobility indium free amorphous oxide based thin film transistors." Proceedings of International Meeting on Information Display. Vol. 8. 2008. 1199-1202. Abstract

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of the post annealing temperatures (200 °C, 250 °C and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature and 150 °C during the channel deposition. From the results it was observed that the effect ofpos annealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs operate in the enhancement mode (n-type), present a high saturation mobility of 24.6 cm2/Vs, a subthreshold gate swing voltage of 0.38 V/decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V and an ION/IOFF ratio of 8x107, satisfying all the requirements to be used in active-matrix backplane.

c d e Fortunato, E.a b, Pereira Águas Ferreira Martins L. a H. a. "Flexible a-Si: H position-sensitive detectors." Proceedings of the IEEE. 93 (2005): 1281-1286. AbstractWebsite

Flexible and large area (5 mm × 80 mm with an active length of 70 mm) position-sensitive detectors (PSDs) deposited onto polymeric substrates (polyimide - Kapton VN) have been fabricated. The optimized structure presented is based on a heterojunction of amorphous silicon (a-Si: H)/ZnO: Al. The sensors were characterized by spectral response, photocurrent dependence as a function of light intensity, and position detection measurements. The set of data obtained on one-dimensional PSDs based on the heterojunction show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a nonlinearity of ±10% over 70-mm length. The produced sensors present a nonlinearity higher than those ones produced on glass substrates, due to the different thermal coefficients exhibited by the polymer and the a-Si: H film. In order to prove this behavior, it was measured the defect density obtained by the constant photocurrent method on a-Si: H thin films deposited on polymeric substrates and bent with different radii of curvature. © 2005 IEEE.