Publications

Export 45 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
André, J. M., V. H. Fernandes, and J. D. Mitchell. "Largest 2-generated subsemigroups of the symmetric inverse semigroup." Proc. Edinb. Math. Soc. (2). 50 (2007): 551-561.Website
Araújo, João, Vítor H. Fernandes, Manuel M. Jesus, Victor Maltcev, and James D. Mitchell. "Automorphisms of partial endomorphism semigroups." Publicationes Mathematicae Debrecen. 79.1-2 (2011): 23-39.
Araújo, Isabel M., Mário J. J. Branco, Vitor H. Fernandes, Gracinda M. S. Gomes, and N. Ruškuc. "On generators and relations for unions of semigroups." Semigroup Forum. 63 (2001): 49-62.
C
Caneco, Rita, Vítor H. Fernandes, and Teresa M. Quinteiro. "Ranks and presentations of some normally ordered inverse semigroups." (Submitted). AbstractWebsite

In this paper we compute the rank and exhibit a presentation for the monoids
of all $P$-stable and $P$-order preserving partial permutations on a finite set
$\Omega$, with $P$ an ordered uniform partition of $\Omega$. These (inverse)
semigroups constitute a natural class of generators of the pseudovariety of
inverse semigroups ${\sf NO}$ of all normally ordered (finite) inverse
semigroups.

Cicalò, Serena, Vítor H. Fernandes, and Csaba Schneider. "Partial transformation monoids preserving a uniform partition." Semigroup Forum (DOI 10.1007/s00233-014-9629-5). 90.2 (2015): 532-544. AbstractWebsite

The objective of this paper is to study the monoid of all partial
transformations of a finite set that preserve a uniform partition. In addition
to proving that this monoid is a quotient of a wreath product with respect to a
congruence relation, we show that it is generated by 5 generators, we compute
its order and determine a presentation on a minimal generating set.

Cordeiro, E., M. Delgado, and V. H. Fernandes. "Relative abelian kernels of some classes of transformation monoids." Bull. Austral. Math. Soc.. 73 (2006): 375-404.Website
D
Delgado, Manuel, and Vítor H. Fernandes. "Rees quotients of numerical semigroups." Portugaliae Mathematica. 70.2 (2013): 93-112. AbstractWebsite

We introduce a class of finite semigroups obtained by considering Rees
quotients of numerical semigroups.
Several natural questions concerning this class, as well as particular
subclasses obtained by considering some special ideals, are answered while
others remain open. We exhibit nice presentations for these semigroups and
prove that the Rees quotients by ideals of N, the positive integers under
addition, constitute a set of generators for the pseudovariety of commutative
and nilpotent semigroups.

Delgado, Manuel, and Vítor H. Fernandes. "Solvable monoids with commuting idempotents." Int. J. Algebra Comput.. 15 (2005): 547-570. Abstract

The notion of the Abelian kernel of a finite monoid is a generalization of that of the derived subgroup of a finite group. A monoid $M$ is then called solvable if its chain of Abelian kernels terminates with the submonoid of $M$ generated by its idempotents. The main result of this paper is that the finite idempotent commuting monoids bearing this property are precisely those whose subgroups are solvable. In particular any finite aperiodic monoid is Abelian-solvable in this sense. A generalization of the main result of this paper has been published [in Int. J. Algebra Comput. 14, No. 5-6, 655-665 (2004; Zbl 1081.20067)] by the authors and ıt S. Margolis and ıt B. Steinberg.

Delgado, Manuel, V{\'ı}tor H. Fernandes, Stuart Margolis, and Benjamin Steinberg. "On semigroups whose idempotent-generated subsemigroup is aperiodic." Internat. J. Algebra Comput.. 14 (2004): 655-665.Website
Delgado, Manuel, and Vítor H. Fernandes. "Abelian kernels of some monoids of injective partial transformations and an application." Semigroup Forum. 61 (2000): 435-452.Website
Delgado, Manuel, and Vítor H. Fernandes. "Abelian kernels of monoids of order-preserving maps and of some of its extensions." Semigroup Forum. 68 (2004): 335-356.Website
Delgado, Manuel, and Vítor H. Fernandes. "Abelian kernels, solvable monoids and the abelian kernel length of a finite monoid." Semigroups and languages. World Sci. Publ., River Edge, NJ, 2004. 68-85.
Dimitrova, I., V. H. Fernandes, J. Koppitz, and T. M. Quinteiro. "Ranks of monoids of endomorphisms of a finite undirected path (DOI: 10.1007/s40840-019-00762-4)." Bulletin of the Malaysian Mathematical Sciences Society (In Press). AbstractWebsite

In this paper we study the widely considered endomorphisms and weak endomorphisms of a finite undirected path from monoid generators perspective. Our main aim is to determine the ranks of the monoids $wEnd P_n$ and $End P_n$ of all weak endomorphisms and all endomorphisms of the undirected path $P_n$ with $n$ vertices. We also consider strong and strong weak endomorphisms of $P_n$.

Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain." Publicationes Mathematicae Debrecen. 81.1-2 (2012): 11-29.
Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "A note on generators of the endomorphism semigroup of an infinite countable chain." Journal of Algebra and its Applications (DOI: 10.1142/S0219498817500311). 16 (2017): 1750031 (9 pages). AbstractWebsite

In this note, we consider the semigroup $O(X)$ of all order endomorphisms of an infinite chain $X$ and the subset $J$ of $O(X)$ of all transformations $\alpha$ such that $|Im(\alpha)|=|X|$. For an infinite countable chain $X$, we give a necessary and sufficient condition on $X$ for $O(X) = < J >$ to hold. We also present a sufficient condition on $X$ for $O(X) = < J >$ to hold, for an arbitrary infinite chain $X$.

F
Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of endomorphisms of a chain with restricted range." Semigroup Forum (DOI: 10.1007/s00233-013-9548-x). 89.1 (2014): 77-104. AbstractWebsite

Let $X$ be a finite or infinite chain and let $\O(X)$ be the monoid of all endomorphisms of $X$.
In this paper, we describe the largest regular subsemigroup of $\O(X)$ and Green's relations on $\O(X)$.
In fact, more generally, if $Y$ is a nonempty subset of $X$ and $\O(X,Y)$ is the subsemigroup of $\O(X)$ of all elements with range contained in $Y$,
we characterize the largest regular subsemigroup of $\O(X,Y)$ and Green's relations on $\O(X,Y)$.
Moreover, for finite chains, we determine when two semigroups of the type $\O(X,Y)$ are isomorphic and calculate their ranks.

Fernandes, V. H., M. M. Jesus, V. Maltcev, and J. D. Mitchell. "Endomorphisms of the semigroup of order-preserving mappings." Semigroup Forum. 81 (2010): 277-285.Website
Fernandes, V. H. "The monoid of all injective order preserving partial transformations on a finite chain." Semigroup Forum. 62 (2001): 178-204.
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the ranks of certain monoids of transformations that preserve a uniform partition." Communications in Algebra. 42.2 (2014): 615-636.
Fernandes, Vítor H. "Presentations for some monoids of partial transformations on a finite chain: a survey." Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ, 2002. 363-378.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of injective partial transformations on a finite chain." Southeast Asian Bull. Math.. 28 (2004): 903-918.
Fernandes, Vítor H., J. Koppitz, and T. Musunthia. "The rank of the semigroup of all order-preserving transformations on a finite fence." Bulletin of the Malaysian Mathematical Sciences Society (DOI: 10.1007/s40840-017-0598-1) (In Press). AbstractWebsite

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup $TF_{n}$ of all
order-preserving transformations on an $n$-element zig-zag ordered set. We determine the rank of $TF_{n}$ and provide a minimal generating set for $TF_{n}$. Moreover, a formula for the number of idempotents in $TF_{n}$ is given.

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of order-preserving or order-reversing transformations on a finite chain." Glasg. Math. J.. 47 (2005): 413-424.Website
Fernandes, Vítor H., and Teresa M. Quinteiro. "Bilateral semidirect product decompositions of transformation monoids." Semigroup Forum. 82 (2011): 271-287. Abstract
Summary: In this paper we consider the monoid $\mathcal {OR}_{n}$ of all full transformations on a chain with $n$ elements that preserve or reverse the orientation, as well as its submonoids $\mathcal {OD}_{n}$ of all order-preserving or order-reversing elements, $\mathcal {OP}_{n}$ of all orientation-preserving elements and $\mathcal {O}_{n}$ of all order-preserving elements. By making use of some well known presentations, we show that each of these four monoids is a quotient of a bilateral semidirect product of two of its remarkable submonoids.
Fernandes, Vítor H., and Teresa M. Quinteiro. "Presentations for monoids of finite partial isometries." Semigroup Forum (DOI: 10.1007/s00233-015-9759-4). 93.1 (2016): 97-110. AbstractWebsite

In this paper we give presentations for the monoid $\DP_n$ of all partial isometries on $\{1,\ldots,n\}$ and for its submonoid $\ODP_n$ of all order-preserving partial isometries.