Publications

Export 69 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fernandes, Vítor H. "On divisors of pseudovarieties generated by some classes of full transformation semigroups." Algebra Colloq.. 15 (2008): 581-588.
Fernandes, Vítor H., and Tânia Paulista. "On the Rank of Monoids of Endomorphisms of a Finite Directed Path." Asian-European Journal of Mathematics (DOI 10.1142/S1793557123500699; Online 28 Oct 2022). 16.04 (2023): 2350069 (13 pages). AbstractWebsite

In this paper we consider endomorphisms of a finite directed path from monoid generators perspective. Our main aim is to determine the rank of the monoid wEndP_n of all weak endomorphisms of a directed path with n vertices, which is a submonoid of the widely studied monoid O_n of all order-preserving transformations of a n-chain. Also, we describe the regular elements of wEndP_n and calculate its size and number of idempotents.

Fernandes, Vítor H., and A. Vernitski. "Groups of permutations preserving orientation (parity) of subsets of a fixed size, and related monoids." (Submitted). AbstractWebsite

We study permutations on n elements preserving orientation (parity) of every subset of size k. We describe all groups of these permutations. Unexpectedly, these groups (except for some special cases) are either trivial, cyclic or dihedral. In this context, we define and study monoids generalizing monoids of order-preserving mappings and monoids of orientation-preserving mappings.

Fernandes, Vítor H., and M. V. Volkov. "On divisors of semigroups of order-preserving mappings of a finite chain." Semigroup Forum. 81 (2010): 551-554.Website
Fernandes, Vítor H. "The Vagner-Preston representation of a block-group." Southeast Asian Bull. Math.. 45.6 (2021): 805-812. AbstractWebsite

In this short note we construct an extension of the Vagner-Preston representation for block-groups and show that its kernel is the largest congruence that separates regular elements.

Fernandes, Vítor H. "On the monoid of order-preserving transformations of a finite chain whose ranges are intervals." Semigroup Forum (DOI 10.1007/s00233-024-10466-2; Online 19 Aug 2024). 109.2 (2024): 336-346. AbstractWebsite

In this note we give a presentation for the monoid IO_n of all order-preserving transformations of a n-chain whose ranges are intervals. We also consider the submonoid IO_n^- of IO_n consisting of order-decreasing transformations, for which we determine the cardinality, the rank and a presentation.

Fernandes, Vítor H., and Teresa M. Quinteiro. "The cardinal of various monoids of transformations that preserve a uniform partition." Bulletin of the Malaysian Mathematical Sciences Society. 35.4 (2012): 885-896.
Fernandes, Vítor H., M. M. Jesus, and B. Singha. "On orientation-preserving transformations of a chain." Communications in Algebra (DOI 10.1080/00927872.2020.1870996). 49.6 (2021): 2300-2325. AbstractWebsite

In this paper we introduce the notion of an orientation-preserving transformation on an arbitrary chain, as
a natural extension for infinite chains of the well known concept for finite chains introduced in 1998 by McAlister and, independently, in 1999 by Catarino and Higgins.
We consider the monoid POP(X) of all orientation-preserving partial transformations on a finite or infinite chain X and its submonoids OP(X) and POPI(X) of all orientation-preserving full transformations and of all orientation-preserving partial permutations on X, respectively.
The monoid PO(X) of all order-preserving partial transformations on X and its injective counterpart POI(X) are also considered.
We study the regularity and give descriptions of the Green's relations of the monoids POP(X), PO(X), OP(X), POPI(X) and POI(X).

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "The cardinal and the idempotent number of various monoids of transformations on a finite chain." Bulletin of the Malaysian Mathematical Sciences Society. 34.2 (2011): 79-85. Abstract

Summary: We consider various classes of monoids of transformations on a finite chain, in particular of transformations that preserve or reverse either the order or the orientation. Being finite monoids we are naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas numbers play an essential role in the last computations.

Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of orientation-preserving transformations with restricted range." Communications in Algebra (DOI:10.1080/00927872.2014.975345). 44.1 (2016): 253-264. Abstractauthorsfinalversion.pdfWebsite

Let $X_n$ be a chain with n elements ($n\in\N$) and let $\OP_n$ be the monoid of all orientation-preserving transformations of $X_n$. In this paper, for any nonempty subset $Y$ of $X_n$, we consider the subsemigroup $\OP_n(Y)$ of $\OP_n$ of all transformations with range contained in $Y$: we describe the largest regular subsemigroup of $\OP_n(Y)$, which actually coincides with its subset of all regular elements, and Green's relations on $\OP_n(Y)$. Also, we determine when two semigroups of the type $\OP_n(Y)$ are isomorphic and calculate their ranks. Moreover, a parallel study is presented for the correspondent subsemigroups of the monoid $\OR_n$ of all either orientation-preserving or orientation-reversing transformations of $X_n$.

Fernandes, Vítor H., and Tânia Paulista. "On the monoid of partial isometries of a cycle graph." Turkish Journal of Mathematics (DOI 10.55730/1300-0098.3460). 47 (2023): 1746-1760. AbstractWebsite

In this paper we consider the monoid DPC_n of all partial isometries of a n-cycle graph C_n. We show that DPC_n is the submonoid of the monoid of all oriented partial permutations on a n-chain whose elements are precisely all restrictions of a dihedral group of order 2n. Our main aim is to exhibit a presentation of DPC_n. We also describe Green's relations of DPC_n and calculate its cardinality and rank.

Fernandes, Vítor H. "Normally ordered semigroups." Glasg. Math. J.. 50 (2008): 325-333.Website
Fernandes, V. H. "The monoid of all injective order preserving partial transformations on a finite chain." Semigroup Forum. 62 (2001): 178-204.
Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of endomorphisms of a chain with restricted range." Semigroup Forum (DOI: 10.1007/s00233-013-9548-x). 89.1 (2014): 77-104. AbstractWebsite

Let $X$ be a finite or infinite chain and let $\O(X)$ be the monoid of all endomorphisms of $X$.
In this paper, we describe the largest regular subsemigroup of $\O(X)$ and Green's relations on $\O(X)$.
In fact, more generally, if $Y$ is a nonempty subset of $X$ and $\O(X,Y)$ is the subsemigroup of $\O(X)$ of all elements with range contained in $Y$,
we characterize the largest regular subsemigroup of $\O(X,Y)$ and Green's relations on $\O(X,Y)$.
Moreover, for finite chains, we determine when two semigroups of the type $\O(X,Y)$ are isomorphic and calculate their ranks.

Fernandes, Vítor H. "On monotone alternating inverse monoids." (Submitted). AbstractWebsite

In this paper, we consider the inverse submonoids AM_n of monotone transformations and AO_n of order-preserving transformations of the alternating inverse monoid AI_n on a chain with n elements. We compute the cardinalities, describe the Green's structures and the congruences, and calculate the ranks of these two submonoids of AI_n.

Fernandes, Vítor H., M. M. Jesus, V. Maltcev, and J. D. Mitchell. "Endomorphisms of the semigroup of order-preserving mappings." Semigroup Forum. 81 (2010): 277-285.Website
Fernandes, Vítor H. "Presentations for some monoids of partial transformations on a finite chain: a survey." Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ, 2002. 363-378.
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the ranks of certain monoids of transformations that preserve a uniform partition." Communications in Algebra. 42.2 (2014): 615-636.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of injective partial transformations on a finite chain." Southeast Asian Bull. Math.. 28 (2004): 903-918.
D
Dimitrova, I., Vítor H. Fernandes, J. Koppitz, and T. M. Quinteiro. "On monoids of endomorphisms of a cycle graph." Mathematica Slovaca (DOI 10.1515/ms-2024-0078; Online 15 October 2024). 74.5 (2024): 1071-1088. AbstractWebsite

In this paper we consider endomorphisms of an undirected cycle graph from Semigroup Theory perspective. Our main aim is to present a process to determine sets of generators with minimal cardinality for the monoids $wEnd(C_n)$ and $End(C_n)$ of all weak endomorphisms and all endomorphisms of an undirected cycle graph $C_n$ with $n$ vertices. We also describe Green's relations and regularity of these monoids and calculate their cardinalities.

Dimitrova, I., Vítor H. Fernandes, J. Koppitz, and T. M. Quinteiro. "On three submonoids of the dihedral inverse monoid on a finite set." Bulletin of the Malaysian Mathematical Sciences Society (DOI 10.1007/s40840-023-01620-0; Online 11 Dec 2023). 47 (2024): 27. AbstractWebsite

In this paper we consider three submonoids of the dihedral inverse monoid DI_n, namely its submonoids OPDI_n, MDI_n and ODI_n of all orientation-preserving, monotone and order-preserving transformations, respectively. For each of these three monoids, we compute the cardinal, give descriptions of Green's relations and determine the rank.

Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain." Publicationes Mathematicae Debrecen. 81.1-2 (2012): 11-29.
Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "A note on generators of the endomorphism semigroup of an infinite countable chain." Journal of Algebra and its Applications (DOI: 10.1142/S0219498817500311). 16 (2017): 1750031 (9 pages). AbstractWebsite

In this note, we consider the semigroup $O(X)$ of all order endomorphisms of an infinite chain $X$ and the subset $J$ of $O(X)$ of all transformations $\alpha$ such that $|Im(\alpha)|=|X|$. For an infinite countable chain $X$, we give a necessary and sufficient condition on $X$ for $O(X) = < J >$ to hold. We also present a sufficient condition on $X$ for $O(X) = < J >$ to hold, for an arbitrary infinite chain $X$.