In this paper we consider the submonoids OPDI_n, MDI_n and ODI_n of the dihedral inverse monoid DI_n of all orientation-preserving, monotone and order-preserving transformations, respectively. Our goal is to exhibit presentations for each of these three monoids.
In this paper we give presentations for the monoid $\DP_n$ of all partial isometries on $\{1,\ldots,n\}$ and for its submonoid $\ODP_n$ of all order-preserving partial isometries.
The objective of this paper is to study the monoid of all partial
transformations of a finite set that preserve a uniform partition. In addition
to proving that this monoid is a quotient of a wreath product with respect to a
congruence relation, we show that it is generated by 5 generators, we compute
its order and determine a presentation on a minimal generating set.
In this paper, we study partial automorphisms and, more generally, injective partial endomorphisms of a finite undirected path from Semigroup Theory perspective. Our main objective is to give formulas for the ranks of the monoids IEnd(P_n) and PAut(P_n) of all injective partial endomorphisms and of all partial automorphisms of the undirected path P_n with n vertices. We also describe Green's relations of PAut(P_n) and IEnd(P_n) and calculate their cardinals.