Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Caneco, Rita, Vítor H. Fernandes, and Teresa M. Quinteiro. "Ranks and presentations of some normally ordered inverse semigroups." Periodica Mathematica Hungarica (DOI 10.1007/s10998-022-00448-8). Online (2022). AbstractWebsite

In this paper we compute the rank and exhibit a presentation for the monoids
of all $P$-stable and $P$-order preserving partial permutations on a finite set
$\Omega$, with $P$ an ordered uniform partition of $\Omega$. These (inverse)
semigroups constitute a natural class of generators of the pseudovariety of
inverse semigroups ${\sf NO}$ of all normally ordered (finite) inverse
semigroups.

Cicalò, Serena, Vítor H. Fernandes, and Csaba Schneider. "Partial transformation monoids preserving a uniform partition." Semigroup Forum (DOI 10.1007/s00233-014-9629-5). 90.2 (2015): 532-544. AbstractWebsite

The objective of this paper is to study the monoid of all partial
transformations of a finite set that preserve a uniform partition. In addition
to proving that this monoid is a quotient of a wreath product with respect to a
congruence relation, we show that it is generated by 5 generators, we compute
its order and determine a presentation on a minimal generating set.

Cordeiro, E., M. Delgado, and V. H. Fernandes. "Relative abelian kernels of some classes of transformation monoids." Bull. Austral. Math. Soc.. 73 (2006): 375-404.Website