Publications

Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
{
Kololuoma, T., J. Leppäniemi, H. Majumdar, R. Branquinho, E. Herbei-Valcu, V. Musat, R. Martins, E. Fortunato, and A. Alastalo, "{Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics}", J. Mater. Chem. C, vol. 3, no. 8, pp. 1776–1786, 2015. AbstractWebsite

We report a sol-gel approach to fabricate aluminum-oxy-hydroxide (AlOOH) -based inks for gravure printing of high-dielectric-constant nanocomposite films. By reacting 3-glycidoxypropyl- trimethoxysilane (GPTS) with aluminum-oxide-hydroxide (AlOOH) nanoparticles under constant bead milling, inks suitable for gravure printing were obtained. The calculated relative dielectric constant based on measured capacitances and film thicknesses for the gravure-printed GPTS:AlOOH nanocomposite varied between 7 and 11 at a 10 kHz frequency. The dielectric constant depended on the mixing ratio of the composite and was found to follow the Maxwell-Garnett ternary-system mixing rule indicating presence of micro/nanopores that affect the electrical properties of the fabricated films. Increasing leakage current with increasing AlOOH content was observed. High leakage current was reduced by printing two-layer films. The double-layered gravure-coated films exhibited similar capacitance density but clearly lower leakage current and less electrical breakdowns in comparison to single-layered films having comparable film compositions and film thicknesses. The best composite yielded a capacitance density of 109 ± 2 pF/mm2 at the 10 kHz frequency and a leakage current density of 60 ± 20 µA/cm2 at 0.5 MV/cm electric field as a single layer. The calculated relative dielectric constant at the 10 kHz frequency for this composition was 11.2 ± 0.5. Introduction

Kiazadeh, A., D. Salgueiro, R. Branquinho, J. Pinto, H. L. Gomes, P. Barquinha, R. Martins, and E. Fortunato, "{Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress}", APL Materials, vol. 3, no. 6: AIP Publishing, pp. 062804, jun, 2015. AbstractWebsite

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20{%} of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

Salgueiro, D., A. Kiazadeh, R. Branquinho, L. Santos, P. Barquinha, R. Martins, and E. Fortunato, "{Solution based zinc tin oxide TFTs: the dual role of the organic solvent}", Journal of Physics D: Applied Physics, vol. 50, no. 6: IOP Publishing, pp. 065106, feb, 2017. AbstractWebsite

Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis ($Δ$V = −0.3 V) and a saturation mobility of 4–5 cm2 V−1 s−1.

Branquinho, R., A. Santa, E. Carlos, D. Salgueiro, P. Barquinha, R. Martins, and E. Fortunato, "{Solution Combustion Synthesis: Applications in Oxide Electronics}", Developments in Combustion Technology: InTech, pp. 397–417, oct, 2016. Abstract

Oxide-based electronics have been well established as an alternative to silicon technology; however, typical processing requires complex, high-vacuum equipment, which is a major drawback, particularly when targeting low-cost applications. The possibility to deposit the materials by low-cost techniques such as inkjet printing has drawn tremendous interest in solution processible materials for electronic applications; however, high processing temperatures still required. To overcome this issue, solution combustion synthesis has been recently pursued. Taking advantage of the exothermic nature of the reaction as a source of energy for localized heating, the precursor solutions can be converted into oxides at lower process temperatures. Theoretically, this can be applied to any metal ions to produce the desired oxide, opening unlimited possibilities to materials' composition and combinations. Solution combustion synthesis has been applied for the production of semiconductor thin films based on ZnO, In2O3, SnO2 and combinations of these oxides, and also for high $ąppa$ dielectrics (Al2O3). All of which are required for numerous electronic devices and applications such as fully oxide-based thin-film transistors (TFTs). The properties of produced thin films are highly dependent on the precursor solution characteristics; hence, the influence of several processing parameters; organic fuel, solvent and annealing temperature was studied. Although precursor solution degradation/oxide formation mechanisms are not yet fully understood, particularly for thin films, we demonstrate that high-performance devices are obtained with combustion solution-based metal oxide thin films. The results clearly show that solution combustion synthesis is becoming one of the most promising methods for low-temperature flexible electronics.

Lorenz, M., M. S. {Ramachandra Rao}, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, et al., "{The 2016 oxide electronic materials and oxide interfaces roadmap}", Journal of Physics D: Applied Physics, vol. 49, no. 43: IOP Publishing, pp. 433001, nov, 2016. AbstractWebsite

Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on 'oxide electronic materials and oxide interfaces'. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action 'towards oxide-based electronics' which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.

Branquinho, R., D. Salgueiro, A. Santa, A. Kiazadeh, P. Barquinha, L. Í. Pereira, R. Martins, and E. Fortunato, "{Towards environmental friendly solution- based ZTO / AlO x TFTs}", Semicond. Sci. Technol., vol. 30: IOP Publishing, pp. 024007, 2015. AbstractWebsite

Solution based deposition has been recently considered as a viable option for low-cost flexible electronics. In this context research efforts have been increasingly centred on the development of suitable solution-processed materials for oxide based transistors. Nevertheless, the majority of synthetic routes reported require the use of toxic organic solvents. In this work we report on a new environmental friendly solution combustion synthesis route, using ethanol as solvent, for the preparation of indium/gallium free amorphous zinc-tin oxide (ZTO) thin film transistors (TFTs) including AlOx gate dielectric. The decomposition of ZTO and AlOx precursor solutions, electrical characterization and stability of solution processed ZTO/AlOx TFTs under gate-bias stress, in both air and vacuum atmosphere, were investigated. The devices demonstrated low hysteresis ($Δ$V = 0.23 V), close to zero turn on voltage, low threshold voltage (VT = 0.36 V) and a saturation mobility of 0.8 cm2 V−1 s−1 at low operation voltages. Ethanol based ZTO/AlOx TFTs are a promising alternative for applications in disposable, low cost and environmental friendly electronics.

Carlos, E., R. Branquinho, A. Kiazadeh, P. Barquinha, R. Martins, and E. Fortunato, "{UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors}", ACS Applied Materials {&} Interfaces, vol. 8, no. 45: American Chemical Society, pp. 31100–31108, nov, 2016. AbstractWebsite

Solution processing of amorphous metal oxides has lately been used as an option to implement in flexible electronics, allowing a reduction of the associated costs and high performance. However, the research has focused more on the semiconductor layer rather than on the insulator layer, which is related to the stability and performance of the devices. This work aims to evaluate amorphous aluminum oxide thin films produced by combustion synthesis and the influence of far-ultraviolet (FUV) irradiation on the properties of the insulator on thin-film transistors (TFTs) using different semiconductors, in order to have compatibility with flexible substrates. An optimized dielectric layer was obtained for an annealing of 30 min assisted by FUV exposure. These thin films were applied in gallium–indium–zinc oxide TFTs as dielectrics showing the best results for TFTs annealed at 180 °C with FUV irradiation: good reproducibility with a subthreshold slope of 0.11 ± 0.01 V dec –1 and a turn-on voltage of −0.12 ± 0.05 V...