Export 793 results:
Sort by: Author Title Type [ Year  (Desc)]
1999
Allain, R., P. Taquet, B. Battail, J. Dejax, P. Richir, M. Véran, F. Limon-Duparcmeur, and et al. "A new genus of sauropod dinosaur from the Gres superieurs formation (Aptian-Albian) of Laos | Un nouveau genre de dinosaure sauropode de la formation des Gres superieurs (Aptien-Albien) du Laos." Comptes Rendus de l'Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes. 329 (1999): 609-616. Abstract
n/a
Almendra, MJ, CD Brondino, O. Gavel, AS Pereira, P. Tavares, S. Bursakov, R. Duarte, J. CALDEIRA, JJG Moura, and I. Moura. "Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas." Biochemistry. 38 (1999): 16366-16372. AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

Coufal, DE, P. Tavares, AS Pereira, BH Hyunh, and SJ Lippard. "Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase." Biochemistry. 38 (1999): 4504-4513. AbstractWebsite

The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (H-red) Were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and Mossbauer spectroscopy. Reaction of NO with H-red affords a dinitrosyl species, designated H-dinitrosyl, with optical spectra (lambda(max) = 450 and 620 nm) and Mossbauer parameters (delta = 0.72 mm/s, Delta E-Q = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The H-dinitrosyl species models features of the H-peroxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, H-dinitrosyl builds up with approximately the same rate constant as H-peroxo (similar to 26 s(-1)) at 4 degrees C. In the absence of protein B, the kinetics of H-dinitrosyl formation were best fit with a biphasic A –> B –> C model, indicating the presence of an intermediate species between H-red and H-dinitrosyl. This result contrasts with the reaction of H-red with dioxygen, in which the H-peroxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.

Wengenack, N., H. Lopes, M. Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "Redox potential of the heme protein KatG from Mycobacterium tuberculosis." Journal of Inorganic Biochemistry. 74 (1999): 336. AbstractWebsite
n/a
Moura, I., AS Pereira, P. Tavares, and JJG Moura. "Simple and complex iron-sulfur proteins in sulfate reducing bacteria." Advances in Inorganic Chemistry, Vol 47. 47 (1999): 361-419. AbstractWebsite
n/a
Archer, M., AL Carvalho, S. Teixeira, I. Moura, JJG Moura, F. Rusnak, and MJ Romao. "Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein." Protein Science. 8 (1999): 1536-1545. Abstract
n/a
Allain, R., P. Taquet, B. Battail, J. Dejax, P. Richir, M. Véran, F. Limon-Duparcmeur, and et al. "Un nouveau genre de dinosaure sauropode de la formation des Grès supérieurs (Aptien-Albien) du Laos." Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science. 329 (1999): 609-616. Abstract
n/a
Pereira, AS, P. Tavares, C. Krebs, BH HUYNH, F. Rusnak, I. Moura, and JJG Moura. "{Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli}." Biochemical And Biophysical Research Communications. 260 (1999): 209-215. Abstract
Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfide-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data. (C) 1999 Academic Press.
Pamplona, A., AS Pereira, P. Tavares, I. Moura, F. Rusnak, and JJG Moura. "{Cloning and overexpression of E.Coli fuscoredoxin}." Journal Of Inorganic Biochemistry. 74 (1999): 260.
Prudencio, M., AS Pereira, P. Tavares, S. Besson, and I. Moura. "{Copper-containing nitrous oxide reductase from Pseudomonas nautica: spectroscopic and redox properties}." Journal Of Inorganic Biochemistry. 74 (1999): 267.
Teodoro, O. M. N. D., and A. M. C. Moutinho. "{Depth Profiling Barium on Ag(111)}." Proceedings of the 12th International Conference on Secondary Ion Mass Spectrometry. 1999. 373-376. Abstract

n/a

Almendra, MJ, CD Brondino, O. Gavel, AS Pereira, P. Tavares, S. Bursakov, R. Duarte, J. CALDEIRA, JJG Moura, and I. Moura. "{Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas}." Biochemistry. 38 (1999): 16366-16372. Abstract
An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.
Coufal, DE, P. Tavares, AS Pereira, BH Hyunh, and SJ Lippard. "{Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase}." Biochemistry. 38 (1999): 4504-4513. Abstract
The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (H-red) Were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and Mossbauer spectroscopy. Reaction of NO with H-red affords a dinitrosyl species, designated H-dinitrosyl, with optical spectra (lambda(max) = 450 and 620 nm) and Mossbauer parameters (delta = 0.72 mm/s, Delta E-Q = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The H-dinitrosyl species models features of the H-peroxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, H-dinitrosyl builds up with approximately the same rate constant as H-peroxo (similar to 26 s(-1)) at 4 degrees C. In the absence of protein B, the kinetics of H-dinitrosyl formation were best fit with a biphasic A –> B –> C model, indicating the presence of an intermediate species between H-red and H-dinitrosyl. This result contrasts with the reaction of H-red with dioxygen, in which the H-peroxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.
Wengenack, N., H. Lopes, M. Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "{Redox potential of the heme protein KatG from Mycobacterium tuberculosis}." Journal Of Inorganic Biochemistry. 74 (1999): 336.
Moura, I., AS Pereira, P. Tavares, and JJG Moura. "{Simple and complex iron-sulfur proteins in sulfate reducing bacteria}." Advances In Inorganic Chemistry, Vol 47. 47 (1999): 361-419.
Leitão, Carlos M. M., Teresa Almeida, Gregoire Bonfait, O. M. N. D. Teodoro, and A. M. C. Moutinho. "{UHV sample holder for fast heating and cooling cycles}." Vaccum. 52 (1999): 23-26. Abstract

n/a

1998
Santos, AGD, W. Klute, J. Torode, V. P. W. Bohm, E. Cabrita, J. Runsink, and RW Hoffmann. "Flexible molecules with defined shape. X. Synthesis and conformational study of 1,5-diaza-cis-decalin." New Journal of Chemistry. 22 (1998): 993-997. Abstract
n/a
Teixeira, M. G., F. Paolucci, M. Marcaccio, T. Aviles, C. Paradisi, F. Maran, and S. Roffia. "Electroinduced and spontaneous metal-halide bond dissociation in [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]." Organometallics. 17 (1998): 1297-1304. AbstractWebsite

The electrochemical behavior of the species [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I] and [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+) in ACN solutions, at 25 degrees C, is described. The kinetic analysis of the cyclic voltammetry curves indicates that the introduction of one electron in the former complex is concerted with the dissociation of the Co-I bond. The ensuing radical undergoes fast solvation to yield the solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), which then acts as an efficient electron donor toward the starting material with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+); finally, the cation is electroreduced at the working potentials to conclude an overall autocatalytic sequence. The solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), formed as a product of the above reduction process, can be reversibly reduced to the corresponding anion at more negative potentials. Confirmation of the above mechanism and of the fact that the solvato complex can act as a solution electron donor toward the starting material was obtained by studying the electrochemical behavior of the solvato complex itself and through calculations aimed to better define the dissociative electron-transfer process to [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]. The dissociation of the metal-halide bond in the neutral complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I], with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+), was also found to occur spontaneously, in the bulk, through the observation of a progressive change of the cyclic voltammetric pattern. Support for the occurrence of the reaction between the starting complex and the solvent was confirmed by conductivity and spectroscopic measurements, which allowed the rate constant for the homogeneous solvolysis to be determined.

Mateus, O., P. Taquet, MT Antunes, H. Mateus, and V. Ribeiro. "Theropod dinosaur nest from Lourinhã, Portugal." Journal of Vertebrate Paleontology. 18 (1998): 61A. Abstractmateus_et_al_1998_theropod_dinosaur_nest_from_lourinha_portugal_svp.pdfWebsite

More than 100 well preserved dinosaur eggs have been discovered in the Upper Jurassic levels (Tithonian) of Lourinhã, Portugal. The eggshels dispersed in a big area with 11 meters in the highest diameter with high concentration in the middle.
[...............]

Mateus, I., Horácio Mateus, MT Antunes, O. Mateus, P. Taquet, V. Ribeiro, and G. Manuppella. "Upper Jurassic Theropod Dinosaur embryos from Lourinhã (Portugal)." Mem. Acad. Ciências de Lisboa. 37 (1998): 101-109. Abstractmateus_et_al_1998_-_upper_jurassic_theropod_dinosaur_embryos_from_lourinha_portugal_-_upper_jurassic_palaeoenvironments_in_portugal_ed._....pdfWebsite

Upper Jurassic nesting site from Paimogo (Lourinhã, Portugal) yielded the oldest dinosaur theropod embryos ever found. Numerous bones, including skull bones, from the skeleton of these embryos have been collected. The study of bones and embryos offers the possibility to learn more on the early life of theropod dinosaurs.

Valentine, AM, P. Tavares, AS Pereira, R. Davydov, C. Krebs, BM Koffman, DE Edmondson, BH HUYNH, and SJ Lippard. "{Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly}." Journal Of The American Chemical Society. 120 (1998): 2190-2191.
Pereira, AS, W. Small, C. Krebs, P. Tavares, DE Edmondson, E. C. Theil, and BH HUYNH. "Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization." Biochemistry. 37 (1998): 9871-9876. AbstractWebsite

Rapid freeze-quench (RFQ) Mossbauer and stopped-flow absorption spectroscopy were used to monitor the ferritin ferroxidase reaction using recombinant (apo) frog M ferritin; the initial transient ferric species could be trapped by the RFQ method using low iron loading (36 Fe2+/ferritin molecule). Biphasic kinetics of ferroxidation were observed and measured directly by the Mossbauer method; a majority (85%) of the ferrous ions was oxidized at a fast rate of similar to 80 s(-1) and the remainder at a much slower rate of similar to 1.7 s(-1). In parallel with the fast phase oxidation of the Fe2+ ions, a single transient iron species is formed which exhibits magnetic properties (diamagnetic ground state) and Mossbauer parameters (Delta E-Q = 1.08 +/- 0.03 mm/s and delta = 0.62 +/- 0.02 mm/s) indicative of an antiferromagnetically coupled peroxodiferric complex. The formation and decay rates of this transient diiron species measured by the RFQ Mossbauer method match those of a transient blue species (lambda(max) = 650 nm) determined by the stopped-flow absorbance measurement. Thus, the transient colored species is assigned to the same peroxodiferric intermediate. Similar transient colored species have been detected by other investigators in several other fast ferritins (H and M subunit types), such as the human H ferritin and the Escherichia coli ferritin, suggesting a similar mechanism for the ferritin ferroxidase step in all fast ferritins. Peroxodiferric complexes are also formed as early intermediates in the reaction of O-2 With the catalytic diiron centers in the hydroxylase component of soluble methane monooxygenase (MMOH) and in the D84E mutant of the R2 subunit of E. coli ribonucleotide reductase. The proposal that a single protein site, with a structure homologous to the diiron centers in MMOH and R2, is involved in the ferritin ferroxidation step is confirmed by the observed kinetics, spectroscopic properties, and purity of the initial peroxodiferric species formed in the frog M ferritin.

Valentine, AM, P. Tavares, AS Pereira, R. Davydov, C. Krebs, BM Koffman, DE Edmondson, BH HUYNH, and SJ Lippard. "Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly." Journal of the American Chemical Society. 120 (1998): 2190-2191. AbstractWebsite
n/a
Gorokhovatsky, Y., D. Temnov, J. N. Marat-Mendes, CJM Dias, and D. K. Das-Gupta. "On the nature of thermally stimulated discharge current spectra in polyethylene terephthalate." Journal of Applied Physics. 83 (1998): 5337-5341. Abstract
n/a
Goulão, Miguel, António Silva Monteiro, José Furtado Martins, Fernando Brito Abreu, Alberto Bigotte Almeida, and Pedro Sousa. "A Software Evolution Experiment." European Software Control and Metrics Conference (ESCOM'98). Eds. Rob Kusters, Adrian Cowderoy, Fred Heemstra, and Jos Trienekens. Rome, Italy: Shakter Publishing B. V., 1998. Abstract
n/a