Publications

Export 47 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Maiti, Biplab K., Teresa Avilés, Marta S. P. Carepo, Isabel Moura, Sofia R. Pauleta, and José J. G. Moura. "Rearrangement of Mo-Cu-S Cluster Reflects the Structural Instability of Orange Protein Cofactor." Z. Anorg. Allg. Chem.. 639.8-9 (2013): 1361-1364.
Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

2012
Maiti, Biplab K., Teresa Aviles, Manolis Matzapetakis, Isabel Moura, Sofia R. Pauleta, and Jose J. G. Moura. "{Synthesis of {[}MoS4](2-)-M (M=Cu and Cd) Clusters: Potential NMR Spectroscopic Structural Probes for the Orange Protein}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY} (2012): {4159-4166}. Abstract

{Two synthetic strategies of tetrathiomolybdate-metal clusters with the potential to be used as NMR structural probes for the location of the metal cofactor in the orange protein (ORP) are described. The first strategy is based on the substitution reaction in which small organic ligands bind directly to the metal centre in a molybdenumcopper hetero-dinuclear cluster. Interaction between {[}PPh4]2{[}MoS4CuCl] and either aliphatic {[}beta-mercaptoethanol (b-me)] or aromatic {[}o-aminobenzenethiol (abt)] thiols in the presence of a strong base resulted in the formation of {[}Ph4P]2{[}S2MoS2Cu(b-me)] (1a) and {[}Et4N]2{[}S2MoS2Cu(abt)]center dot H2O center dot 0.25DMF (1b), which can be used to obtain intermolecular NOEs. The compound 1a readily hydrolyzed to {[}Ph4P]2{[}OSMoS2Cu(b-me)] (1ahydro) in contact with a protic solvent. The second strategy consisted of the incorporation of cadmium into tetrathiomolybdate ({[}MoS4]2), which gives rise to the trinuclear cluster compound {[}PPh4]2{[}(MoS4)2Cd] (2). All clusters were characterized spectroscopically and their structure determined by X-ray diffraction. The NMR spectroscopic data are consistent with the formation of a complex with a 1:1 ratio of \{MoS4Cu\} and thiol. The 113Cd NMR chemical shift of compound 2 is consistent with the cadmium having a tetrahedral geometry and coordinated by four sulfur ligands. The tetraphenylphosphonium cation in compound 1a was replaced by a tetramethylammonium countercation originating in the water-soluble compound {[}Me4N-1a]. Solubility in aqueous buffers is a requirement for incorporating this cluster into apo-ORP. These compounds will be used to identify the exact location of the ORP heterometallic cluster using NMR methodologies.}

Bruno Pedras, Vitor Rosa, Richard Welter, Carlos Lodeiro, and Teresa Aviles. "{New quinoline alpha-diimine ligands as fluorescent probes for metal ions: Ultrasound-assisted and conventional synthetic methods}." {INORGANICA CHIMICA ACTA}. {381} (2012): {143-149}. Abstract

{Three new emissive 8-aminoquinoline derived probes (1)-(3) and one dinuclear Zn(II) complex (4) were synthesized and fully characterized. Their absorption spectra show maxima at 310-336 nm, and fluorescence emission between 456 and 498 nm. Compound (1) was characterized by single crystal X-ray diffraction. The effect upon Zn(II) and Cu(II) coordination to compounds (1)-(3) was studied by monitoring the changes in absorption and fluorescence spectra, and complemented by calculation of metal-ligand stability constants. The results indicate that compound (3) is the one that presents the most favorable geometry for coordinating two metal cations, fact that is confirmed by the synthesis of the dinuclear complex (4), with similar molecular geometry. (C) 2011 Elsevier B.V. All rights reserved.}

Vitor Rosa, Sara Realista, Ana Mourato, Luisa Maria Abrantes, Joao Henriques, Maria Jose Calhorda, Teresa Aviles, Michael G. B. Drew, and Vitor Felix. "{1,1 `-Bis(diphenylphosphino)ferrocene bridging two mono(cyclopentadienyl) cobalt moieties: Synthesis, structure, electrochemistry and DFT studies}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {712} (2012): {52-56}. Abstract

{Reaction of {[}Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex {[}Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf. (C) 2012 Elsevier B.V. All rights reserved.}

Romain, Charles, Vitor Rosa, Christophe Fliedel, Frederic Bier, Frederic Hild, Richard Welter, Samuel Dagorne, and Teresa Aviles. "{Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of epsilon-caprolactone}." {DALTON TRANSACTIONS}. {41} (2012): {3377-3379}. Abstract

{Zinc alkyl cations supported by N,N-BIAN-type bidentate ligands were found to be highly active in the immortal ROP of epsilon-caprolactone to yield narrowly disperse and chain length-controlled poly(epsilon-caprolactone), whether in solution or bulk polymerization conditions.}

Li, Lidong, Patricia S. Lopes, Vitor Rosa, Claudia A. Figueira, Amelia M. N. D. A. Lemos, Teresa M. Duarte, Teresa Aviles, and Pedro T. Gomes. "{Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes}." {DALTON TRANSACTIONS}. {41} (2012): {5144-5154}. Abstract

{{A series of Ar-BIAN-based copper(I) complexes (where Ar-BIAN = bis(aryl) acenaphthenequinonediimine) were synthesised and characterised by H-1 and C-13 NMR spectroscopies, FT-IR spectroscopy, MALDI-TOF-MS spectrometry, cyclic voltammetry and single crystal X-ray diffraction. The bis-chelated complexes of general formula {[}Cu(Ar-BIAN)(2)]BF4 (where Ar = C6H5 (1), 4-iPrC(6)H(4) (3), 2-iPrC(6)H(4) (4)) were prepared by reaction of {[}Cu(NCMe)(4)]BF4 with two equivalents of the corresponding Ar-BIAN ligands, in dichloromethane, while the mono-chelated complexes of the type {[}Cu(Ar-BIAN)L2]BF4 (where Ar = 2,6-iPr(2)C(6)H(3)

2011
de Fremont, Pierre, Herve Clavier, Vitor Rosa, Teresa Aviles, and Pierre Braunstein. "{Synthesis, Characterization, and Reactivity of Cationic Gold(I) alpha-Diimine Complexes}." {ORGANOMETALLICS}. {30} (2011): {2241-2251}. Abstract

{{A series of cationic gold(I) alpha-diimine complexes of the type {[}(NHC)Au(alpha-diimine)]X or {[}(PPh(3))Au(alpha-diimine)]X, where NHC = IPr

Aviles, T., S. Jansat, M. Martinez, F. Montilla, and C. Rodriguez. "Deactivation of the Cobalt Catalyst for the Cyclotrimerization of Acetylenes in Ionic Liquids: Solvent Effects on the Mechanism and Thermal and Pressure Activation Parameters." Organometallics. 30 (2011): 3919-3922. AbstractWebsite

The deactivation reaction of the [CoCp(1,4-sigma-C(4)-[Ph](4))PPh(3)] catalyst for the cyclotrimerization of acetylenes has been kinetico-mechanistically studied under different temperature, pressure, and solvent conditions. The results indicate a dramatic change in mechanism from conventional to ionic liquid solvents due to the polarity of the medium.

2010
Rosa, V., C. I. M. Santos, R. Welter, G. Aullon, C. Lodeiro, and T. Aviles. "Comparison of the Structure and Stability of New alpha-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental." Inorg Chem. 49 (2010): 8699-8708. AbstractWebsite

New compounds of the general formulas [M(Ar-BIAN)(2)]BF(4) and [M(Ar-BIAN)(NCMe)(2)]BF(4), where M=Cu(1) or Ag(1) and Ar-BIAN = bis(aryl)acenaphthenequinonediimine, were synthesized by the direct reaction of [Cu(NCMe)(4)]BF(4) or [Ag(NCMe)(4)]BF(4) with the corresponding Ar-BIAN ligand in dried CH(2)Cl(2). The synthesized compounds are [M(o, d, p-Me(3)C(6)H(2)-BIAN)(2)]BF(4) where M = Cu(1) (1) and Ag(1) (2), [M(o,d-iPr(2)C(6)H(3)-BIAN)(NCMe)(2)]BF(4) where M = Cu(1) (3) and Ag(1) (4), and [Ag(o,d-iPr(2)C(6)H(3)-BIAN)(2)]BF(4) (5). The crystal structures of compounds 1-3 and 5 were solved by singlecrystal X-ray diffraction. In all cases copper(I) or silver(I) are in a distorted tetrahedron that is constructed from the four nitrogen atoms of the two a-diimine ligands or, in 3, from one a-diimine ligand and two acetonitrile molecules. All compounds were characterized by elemental analyses, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and IR, UV-vis, and (1)H NMR spectroscopy. The analysis of the molecular geometry and the energetic changes for the formation reactions of the complexes, in a CH(2)Cl(2) solution, were evaluated by density functional theory calculations and compared with the experimental results.