Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
2001
Montilla, F., T. Aviles, T. Casimiro, A. A. Ricardo, and M. N. da Ponte. "CPCO(CO)(2)-catalysed cyclotrimerisation of alkynes in supercritical carbon dioxide." J Organomet Chem. 632 (2001): 113-118. AbstractWebsite

The reactivity of mono-substituted HC=CR (R =Ph. a; CH2OH, b; CH2CH2CH2CH3, c) and di-substituted RC=CR (R = CH2CH3, d; CO2CH3, e; Ph. f) acetylenes was studied in supercritical carbon dioxide (scCO(2)) using the easily available complex CpCo(CO)(2) as catalyst. The reaction of phenylacetylene produced a mixture of the isomeric cyclotrimers 1,3,5- (2a) and 1.2,4-triphenylbenzene (2a '). in a 1:5 ratio, and traces of cobaltcyclopentadienone complexes CPCO(eta (4)-C4H2[Ph](2)CO) (6a, mixture of isomers). The possible product formed by the incorporation of CO, to alkynes, i.e. diphenylpyrone (7a) was not observed. The reaction of the cobaltacyclopentadiene complex CpCo(1.4-sigma -C-4[Ph](4))(PPh)(3) (8f), in scCO(2), was performed. No insertion of CO2 into the Co-C a-bond to form tetraphenylpyrone (7f) by reductive elimination was observed, instead the cobaItcyclobutadiene Complex CpCo(eta (4)-C-4[Ph](4)) (9f) was formed. In the reactions with other alkynes, lower yields were obtained in general, except in the cyclotrimerisation of the highly activated alkyne, propargyl alcohol (b). Reaction of the non-activated alkynes, 1-hexyne (c) and 3-hexyne (d), produced complex mixtures of cobalt complexes in low yield in which the alkyne was coordinated to cobalt. Finally, the highly hindered diphenylacetylene (f) gave a mixture of the known Complexes CpCo(eta (4)-C-4[Ph](4)) (9f) and CpCo(eta (4)- C-4[Ph](4)CO) (6f) in agreement with the results observed in conventional organic solvents. (C) 2001 Elsevier Science B.V, All rights reserved.

2010
Rosa, V., C. I. M. Santos, R. Welter, G. Aullon, C. Lodeiro, and T. Aviles. "Comparison of the Structure and Stability of New alpha-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental." Inorg Chem. 49 (2010): 8699-8708. AbstractWebsite

New compounds of the general formulas [M(Ar-BIAN)(2)]BF(4) and [M(Ar-BIAN)(NCMe)(2)]BF(4), where M=Cu(1) or Ag(1) and Ar-BIAN = bis(aryl)acenaphthenequinonediimine, were synthesized by the direct reaction of [Cu(NCMe)(4)]BF(4) or [Ag(NCMe)(4)]BF(4) with the corresponding Ar-BIAN ligand in dried CH(2)Cl(2). The synthesized compounds are [M(o, d, p-Me(3)C(6)H(2)-BIAN)(2)]BF(4) where M = Cu(1) (1) and Ag(1) (2), [M(o,d-iPr(2)C(6)H(3)-BIAN)(NCMe)(2)]BF(4) where M = Cu(1) (3) and Ag(1) (4), and [Ag(o,d-iPr(2)C(6)H(3)-BIAN)(2)]BF(4) (5). The crystal structures of compounds 1-3 and 5 were solved by singlecrystal X-ray diffraction. In all cases copper(I) or silver(I) are in a distorted tetrahedron that is constructed from the four nitrogen atoms of the two a-diimine ligands or, in 3, from one a-diimine ligand and two acetonitrile molecules. All compounds were characterized by elemental analyses, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and IR, UV-vis, and (1)H NMR spectroscopy. The analysis of the molecular geometry and the energetic changes for the formation reactions of the complexes, in a CH(2)Cl(2) solution, were evaluated by density functional theory calculations and compared with the experimental results.