Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Fliedel, Christophe, Vitor Rosa, Filipa M. Alves, Ana. M. Martins, Teresa Aviles, and Samuel Dagorne. "{P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, epsilon-caprolactone and trimethylene carbonate}." {DALTON TRANSACTIONS}. {44} (2015): {12376-12387}. Abstract

{The P, O-type phosphinophenol proligands (1 center dot H, 2-PPh2-4-Me-6-Me-C6H2OH; 2 center dot H, 2-PPh2-4-Me-6-Bu-t-C6H2OH) readily react with one equiv. of ZnEt2 to afford in high yields the corresponding Zn(II)ethyl dimers of the type {[}(kappa(2)-P, O) Zn-Et](2) (3 and 4) with two mu-O-Ph bridging oxygens connecting the two Zn(II) centers, as determined by X-ray diffraction (XRD) studies in the case of 3. Based on diffusion-ordered NMR spectroscopy (DOSY), both species 3 and 4 retain their dimeric structures in solution. The alcoholysis reaction of Zn(II) alkyls 3 and 4 with BnOH led to the high yield formation of the corresponding Zn(II) benzyloxide species {[}(kappa(2)-P, O) Zn-OBn](2) (5 and 6), isolated in a pure form as colorless solids. The centrosymmetric and dimeric nature of Zn(II) alkoxides 5 and 6 in solution was deduced from DOSY NMR experiments and multinuclear NMR data. Though the heteroleptic species 5 is stable in solution, its analogue 6 is instable in CH2Cl2 solution at room temperature to slowly decompose to the corresponding homoleptic species 8 via the transient formation of (kappa(2)-P, O)(2)Zn-2(mu-OBn)(mu-kappa(1):kappa(1)-P, O) (6'). Crystallization of compound 6 led to crystals of 6', as established by XRD analysis. The reaction of ZnEt2 with two equiv. of 1 center dot H and 2 center dot H allowed access to the corresponding homoleptic species of the type {[}Zn(P, O)(2)] (7 and 8). All gathered data are consistent with compound 7 being a dinuclear species in the solid state and in solution. Data for species 8, which bears a sterically demanding P, O-ligand, are consistent with a mononuclear species in solution. The Zn(II) alkoxide species 5 and the {[}Zn(P, O)(2)]-type compounds 7 and 8 were evaluated as initiators of the ring-opening polymerization (ROP) of lactide (LA), epsilon-caprolactone (epsilon-CL) and trimethylene carbonate (TMC). Species 5 is a well-behaved ROP initiator for the homo-, co- and terpolymerization of all three monomers with the production of narrow disperse materials under living and immortal conditions. Though species 7 and 8 are ROP inactive on their own, they readily polymerize LA in the presence of a nucleophile such as BnOH to produce narrow disperse PLA, presumably via an activated-monomer ROP mechanism.}

Kauf, Thomas, Vitor Rosa, Christophe Fliedel, Roberto Pattacini, Naina Deibel, Teresa Aviles, Biprajit Sarkar, and Pierre Braunstein. "{Reactivity of TCNE and TCNQ derivatives of quinonoid zwitterions with Cu(I)}." {DALTON TRANSACTIONS}. {44} (2015): {5441-5450}. Abstract

{The reactions of TCNE- and TCNQ-functionalized (TCNE: tetracyanoethylene and TCNQ: 7,7', 8,8'-tetra-cyanoquinodimethane) zwitterionic benzoquinonemonoimines with a Cu(I)-BIAN complex (BIAN = bis-(o, o'-bisisopropylphenyl)acenaphthenequinonediimine) have been investigated and found to follow a diversity of interesting patterns. The complexes {[}Cu(BIAN)(NCMe)(L2)]BF4 (2) and {[}Cu(BIAN)(L2)(2)]BF4 (4) were obtained by reacting {[}Cu(BIAN)(NCMe) 2] BF4 (1) with one and two equivalents of L2, respectively. Following similar procedures, the complexes {[}Cu(BIAN)(NCMe)(L3)] BF4 (6) and {[}Cu(BIAN)(L3)(2)]BF4 (7) were obtained by reaction of 1 with L3. The reaction of 2 with 0.5 equiv. of 4,4'-bipyridine afforded {[}\{Cu(BIAN)-(L2)\}(2)(mu-4,4'-bipyridine)](BF4)(2) (3). The complexes were characterized by multinuclear NMR, IR and UV-Vis spectroscopic techniques, mass spectrometry, cyclic voltammetry and elemental analysis. The molecular structures of complexes 3 center dot 4CH(2)Cl(2) and 4 center dot CH2Cl2 were determined by single crystal X-ray diffraction. An unexpected coordination polymer {[}Cu(L2(-))(2)](infinity) (5) was also structurally characterized, which contains Cu(II) centres chelated by two N, O-bound ligands resulting from the monodeprotonation of L2.}

2014
Fliedel, Christophe, Vitor Rosa, Carla I. M. Santos, Pablo J. Gonzalez, Rui M. Almeida, Clara S. B. Gomes, Pedro T. Gomes, Amelia M. N. D. A. Lemos, Gabriel Aullon, Richard Welter, and Teresa Aviles. "{Copper(II) complexes of bis(aryl-imino)acenaphthene ligands: synthesis, structure, DFT studies and evaluation in reverse ATRP of styrene}." {DALTON TRANSACTIONS}. {43} (2014): {13041-13054}. Abstract

{Two new Ar-BIAN Cu(II) complexes (where Ar-BIAN = bis(aryl-imino)acenaphthene) of formulations {[}CuCl2(Mes-BIAN)] (1) (Mes = 2,4,6-Me3C6H2) and {[}CuCl2(Dipp-BIAN)] (2) (Dipp = 2,6-iPr(2)C(6)H(3)) were synthesised by direct reaction of CuCl2 suspended in dichloromethane with the respective ligands Mes-BIAN (L1) and Dipp-BIAN (L2), dissolved in dichloromethane, under an argon atmosphere. Attempts to obtain these compounds by solubilising CuCl2 in methanol and adding a dichloromethane solution of the corresponding ligand, under aerobic conditions, gave also compound 1, but, in the case of L2, the Cu(I) dimer {[}CuCl(Dipp-BIAN)](2) (3) was obtained instead of compound 2. The compounds were fully characterised by elemental analyses, MALDI-TOF mass spectrometry, FT-IR, H-1 NMR and EPR spectroscopic techniques. The solid-state molecular structures of compounds 1-3 were determined by single crystal X-ray diffraction, showing the expected chelation of the Ar-BIAN ligands and two chloride ligands completing the coordination sphere of the Cu(11) centre. In the case of the complex 1, an intermediate coordination geometry around the Cu(II) centre, between square planar and tetrahedral, was revealed, while the complex 2 showed an almost square planar geometry. The structural differences and evaluation of energetic changes were rationalised by DFT calculations. Analysis of the electrochemical behaviour of complexes 1-3 was performed by cyclic voltammetry and the experimental redox potentials for Cu(II)/Cu(I) pairs have been compared with theoretical values calculated by DFT in the gas phase and in dichloromethane and methanol solutions. The complex 1 exhibited good activity in the reverse atom transfer radical polymerisation (ATRP) of styrene.}

2013
Li, Lidong, Patricia S. Lopes, Claudia A. Figueira, Clara S. B. Gomes, M. Teresa Duarte, Vitor Rosa, Christophe Fliedel, Teresa Aviles, and Pedro T. Gomes. "{Cationic and Neutral (Ar-BIAN) Copper( I) Complexes Containing Phosphane and Arsane Ancillary Ligands: Synthesis, Molecular Structure and Catalytic Behaviour in Cycloaddition Reactions of Azides and Alkynes}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY} (2013): {1404-1417}. Abstract

{{A series of new cationic and neutral (Ar-BIAN) copper(I) complexes {[}in which Ar-BIAN = bis(aryl)acenaphthenequinonediimine] was synthesised and characterised by elemental analysis, 1D and 2D NMR spectroscopy and single-crystal Xray diffraction. The cationic complexes of the general formula {[}Cu(Ar-BIAN)L-2]BF4 {[}L-2 = (PPh3)(2) (1), dppe (2), dppf (3), (AsPh3)(2) (4); Ar = 4-iPrC(6)H(4) (a), 4-MeOC6H4 (b), 4-NO2C6H4 (c), 2-iPrC(6)H(4) (d), Ph2PCH2CH2PPh2 (dppe), (Ph2PC5H4)(2)Fe (dppf)] were synthesised by reaction of {[}Cu(EPh3)(4)]BF4 (E = P or As) and equimolar amounts of Ar-BIAN ligands, or by reaction of equimolar amounts of {[}Cu(NCMe)(4)]BF4, 4-iPrC(6)H(4)-BIAN (a) and diphosphanes dppe or dppf, in dichloromethane, whereas the neutral complexes of the types {[}CuX(Ar-BIAN)(EPh3)] {[}X = Cl

Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

2012
Bruno Pedras, Vitor Rosa, Richard Welter, Carlos Lodeiro, and Teresa Aviles. "{New quinoline alpha-diimine ligands as fluorescent probes for metal ions: Ultrasound-assisted and conventional synthetic methods}." {INORGANICA CHIMICA ACTA}. {381} (2012): {143-149}. Abstract

{Three new emissive 8-aminoquinoline derived probes (1)-(3) and one dinuclear Zn(II) complex (4) were synthesized and fully characterized. Their absorption spectra show maxima at 310-336 nm, and fluorescence emission between 456 and 498 nm. Compound (1) was characterized by single crystal X-ray diffraction. The effect upon Zn(II) and Cu(II) coordination to compounds (1)-(3) was studied by monitoring the changes in absorption and fluorescence spectra, and complemented by calculation of metal-ligand stability constants. The results indicate that compound (3) is the one that presents the most favorable geometry for coordinating two metal cations, fact that is confirmed by the synthesis of the dinuclear complex (4), with similar molecular geometry. (C) 2011 Elsevier B.V. All rights reserved.}

Vitor Rosa, Sara Realista, Ana Mourato, Luisa Maria Abrantes, Joao Henriques, Maria Jose Calhorda, Teresa Aviles, Michael G. B. Drew, and Vitor Felix. "{1,1 `-Bis(diphenylphosphino)ferrocene bridging two mono(cyclopentadienyl) cobalt moieties: Synthesis, structure, electrochemistry and DFT studies}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {712} (2012): {52-56}. Abstract

{Reaction of {[}Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex {[}Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf. (C) 2012 Elsevier B.V. All rights reserved.}

Romain, Charles, Vitor Rosa, Christophe Fliedel, Frederic Bier, Frederic Hild, Richard Welter, Samuel Dagorne, and Teresa Aviles. "{Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of epsilon-caprolactone}." {DALTON TRANSACTIONS}. {41} (2012): {3377-3379}. Abstract

{Zinc alkyl cations supported by N,N-BIAN-type bidentate ligands were found to be highly active in the immortal ROP of epsilon-caprolactone to yield narrowly disperse and chain length-controlled poly(epsilon-caprolactone), whether in solution or bulk polymerization conditions.}

Li, Lidong, Patricia S. Lopes, Vitor Rosa, Claudia A. Figueira, Amelia M. N. D. A. Lemos, Teresa M. Duarte, Teresa Aviles, and Pedro T. Gomes. "{Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes}." {DALTON TRANSACTIONS}. {41} (2012): {5144-5154}. Abstract

{{A series of Ar-BIAN-based copper(I) complexes (where Ar-BIAN = bis(aryl) acenaphthenequinonediimine) were synthesised and characterised by H-1 and C-13 NMR spectroscopies, FT-IR spectroscopy, MALDI-TOF-MS spectrometry, cyclic voltammetry and single crystal X-ray diffraction. The bis-chelated complexes of general formula {[}Cu(Ar-BIAN)(2)]BF4 (where Ar = C6H5 (1), 4-iPrC(6)H(4) (3), 2-iPrC(6)H(4) (4)) were prepared by reaction of {[}Cu(NCMe)(4)]BF4 with two equivalents of the corresponding Ar-BIAN ligands, in dichloromethane, while the mono-chelated complexes of the type {[}Cu(Ar-BIAN)L2]BF4 (where Ar = 2,6-iPr(2)C(6)H(3)