Publications

Export 12 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
{
de Fremont, Pierre, Herve Clavier, Vitor Rosa, Teresa Aviles, and Pierre Braunstein. "{Synthesis, Characterization, and Reactivity of Cationic Gold(I) alpha-Diimine Complexes}." {ORGANOMETALLICS}. {30} (2011): {2241-2251}. Abstract

{{A series of cationic gold(I) alpha-diimine complexes of the type {[}(NHC)Au(alpha-diimine)]X or {[}(PPh(3))Au(alpha-diimine)]X, where NHC = IPr

Li, Lidong, Patricia S. Lopes, Vitor Rosa, Claudia A. Figueira, Amelia M. N. D. A. Lemos, Teresa M. Duarte, Teresa Aviles, and Pedro T. Gomes. "{Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes}." {DALTON TRANSACTIONS}. {41} (2012): {5144-5154}. Abstract

{{A series of Ar-BIAN-based copper(I) complexes (where Ar-BIAN = bis(aryl) acenaphthenequinonediimine) were synthesised and characterised by H-1 and C-13 NMR spectroscopies, FT-IR spectroscopy, MALDI-TOF-MS spectrometry, cyclic voltammetry and single crystal X-ray diffraction. The bis-chelated complexes of general formula {[}Cu(Ar-BIAN)(2)]BF4 (where Ar = C6H5 (1), 4-iPrC(6)H(4) (3), 2-iPrC(6)H(4) (4)) were prepared by reaction of {[}Cu(NCMe)(4)]BF4 with two equivalents of the corresponding Ar-BIAN ligands, in dichloromethane, while the mono-chelated complexes of the type {[}Cu(Ar-BIAN)L2]BF4 (where Ar = 2,6-iPr(2)C(6)H(3)

Kauf, Thomas, Vitor Rosa, Christophe Fliedel, Roberto Pattacini, Naina Deibel, Teresa Aviles, Biprajit Sarkar, and Pierre Braunstein. "{Reactivity of TCNE and TCNQ derivatives of quinonoid zwitterions with Cu(I)}." {DALTON TRANSACTIONS}. {44} (2015): {5441-5450}. Abstract

{The reactions of TCNE- and TCNQ-functionalized (TCNE: tetracyanoethylene and TCNQ: 7,7', 8,8'-tetra-cyanoquinodimethane) zwitterionic benzoquinonemonoimines with a Cu(I)-BIAN complex (BIAN = bis-(o, o'-bisisopropylphenyl)acenaphthenequinonediimine) have been investigated and found to follow a diversity of interesting patterns. The complexes {[}Cu(BIAN)(NCMe)(L2)]BF4 (2) and {[}Cu(BIAN)(L2)(2)]BF4 (4) were obtained by reacting {[}Cu(BIAN)(NCMe) 2] BF4 (1) with one and two equivalents of L2, respectively. Following similar procedures, the complexes {[}Cu(BIAN)(NCMe)(L3)] BF4 (6) and {[}Cu(BIAN)(L3)(2)]BF4 (7) were obtained by reaction of 1 with L3. The reaction of 2 with 0.5 equiv. of 4,4'-bipyridine afforded {[}\{Cu(BIAN)-(L2)\}(2)(mu-4,4'-bipyridine)](BF4)(2) (3). The complexes were characterized by multinuclear NMR, IR and UV-Vis spectroscopic techniques, mass spectrometry, cyclic voltammetry and elemental analysis. The molecular structures of complexes 3 center dot 4CH(2)Cl(2) and 4 center dot CH2Cl2 were determined by single crystal X-ray diffraction. An unexpected coordination polymer {[}Cu(L2(-))(2)](infinity) (5) was also structurally characterized, which contains Cu(II) centres chelated by two N, O-bound ligands resulting from the monodeprotonation of L2.}

Fliedel, Christophe, Vitor Rosa, Filipa M. Alves, Ana. M. Martins, Teresa Aviles, and Samuel Dagorne. "{P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, epsilon-caprolactone and trimethylene carbonate}." {DALTON TRANSACTIONS}. {44} (2015): {12376-12387}. Abstract

{The P, O-type phosphinophenol proligands (1 center dot H, 2-PPh2-4-Me-6-Me-C6H2OH; 2 center dot H, 2-PPh2-4-Me-6-Bu-t-C6H2OH) readily react with one equiv. of ZnEt2 to afford in high yields the corresponding Zn(II)ethyl dimers of the type {[}(kappa(2)-P, O) Zn-Et](2) (3 and 4) with two mu-O-Ph bridging oxygens connecting the two Zn(II) centers, as determined by X-ray diffraction (XRD) studies in the case of 3. Based on diffusion-ordered NMR spectroscopy (DOSY), both species 3 and 4 retain their dimeric structures in solution. The alcoholysis reaction of Zn(II) alkyls 3 and 4 with BnOH led to the high yield formation of the corresponding Zn(II) benzyloxide species {[}(kappa(2)-P, O) Zn-OBn](2) (5 and 6), isolated in a pure form as colorless solids. The centrosymmetric and dimeric nature of Zn(II) alkoxides 5 and 6 in solution was deduced from DOSY NMR experiments and multinuclear NMR data. Though the heteroleptic species 5 is stable in solution, its analogue 6 is instable in CH2Cl2 solution at room temperature to slowly decompose to the corresponding homoleptic species 8 via the transient formation of (kappa(2)-P, O)(2)Zn-2(mu-OBn)(mu-kappa(1):kappa(1)-P, O) (6'). Crystallization of compound 6 led to crystals of 6', as established by XRD analysis. The reaction of ZnEt2 with two equiv. of 1 center dot H and 2 center dot H allowed access to the corresponding homoleptic species of the type {[}Zn(P, O)(2)] (7 and 8). All gathered data are consistent with compound 7 being a dinuclear species in the solid state and in solution. Data for species 8, which bears a sterically demanding P, O-ligand, are consistent with a mononuclear species in solution. The Zn(II) alkoxide species 5 and the {[}Zn(P, O)(2)]-type compounds 7 and 8 were evaluated as initiators of the ring-opening polymerization (ROP) of lactide (LA), epsilon-caprolactone (epsilon-CL) and trimethylene carbonate (TMC). Species 5 is a well-behaved ROP initiator for the homo-, co- and terpolymerization of all three monomers with the production of narrow disperse materials under living and immortal conditions. Though species 7 and 8 are ROP inactive on their own, they readily polymerize LA in the presence of a nucleophile such as BnOH to produce narrow disperse PLA, presumably via an activated-monomer ROP mechanism.}

Bruno Pedras, Vitor Rosa, Richard Welter, Carlos Lodeiro, and Teresa Aviles. "{New quinoline alpha-diimine ligands as fluorescent probes for metal ions: Ultrasound-assisted and conventional synthetic methods}." {INORGANICA CHIMICA ACTA}. {381} (2012): {143-149}. Abstract

{Three new emissive 8-aminoquinoline derived probes (1)-(3) and one dinuclear Zn(II) complex (4) were synthesized and fully characterized. Their absorption spectra show maxima at 310-336 nm, and fluorescence emission between 456 and 498 nm. Compound (1) was characterized by single crystal X-ray diffraction. The effect upon Zn(II) and Cu(II) coordination to compounds (1)-(3) was studied by monitoring the changes in absorption and fluorescence spectra, and complemented by calculation of metal-ligand stability constants. The results indicate that compound (3) is the one that presents the most favorable geometry for coordinating two metal cations, fact that is confirmed by the synthesis of the dinuclear complex (4), with similar molecular geometry. (C) 2011 Elsevier B.V. All rights reserved.}

Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

Romain, Charles, Vitor Rosa, Christophe Fliedel, Frederic Bier, Frederic Hild, Richard Welter, Samuel Dagorne, and Teresa Aviles. "{Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of epsilon-caprolactone}." {DALTON TRANSACTIONS}. {41} (2012): {3377-3379}. Abstract

{Zinc alkyl cations supported by N,N-BIAN-type bidentate ligands were found to be highly active in the immortal ROP of epsilon-caprolactone to yield narrowly disperse and chain length-controlled poly(epsilon-caprolactone), whether in solution or bulk polymerization conditions.}

Fliedel, Christophe, Vitor Rosa, Carla I. M. Santos, Pablo J. Gonzalez, Rui M. Almeida, Clara S. B. Gomes, Pedro T. Gomes, Amelia M. N. D. A. Lemos, Gabriel Aullon, Richard Welter, and Teresa Aviles. "{Copper(II) complexes of bis(aryl-imino)acenaphthene ligands: synthesis, structure, DFT studies and evaluation in reverse ATRP of styrene}." {DALTON TRANSACTIONS}. {43} (2014): {13041-13054}. Abstract

{Two new Ar-BIAN Cu(II) complexes (where Ar-BIAN = bis(aryl-imino)acenaphthene) of formulations {[}CuCl2(Mes-BIAN)] (1) (Mes = 2,4,6-Me3C6H2) and {[}CuCl2(Dipp-BIAN)] (2) (Dipp = 2,6-iPr(2)C(6)H(3)) were synthesised by direct reaction of CuCl2 suspended in dichloromethane with the respective ligands Mes-BIAN (L1) and Dipp-BIAN (L2), dissolved in dichloromethane, under an argon atmosphere. Attempts to obtain these compounds by solubilising CuCl2 in methanol and adding a dichloromethane solution of the corresponding ligand, under aerobic conditions, gave also compound 1, but, in the case of L2, the Cu(I) dimer {[}CuCl(Dipp-BIAN)](2) (3) was obtained instead of compound 2. The compounds were fully characterised by elemental analyses, MALDI-TOF mass spectrometry, FT-IR, H-1 NMR and EPR spectroscopic techniques. The solid-state molecular structures of compounds 1-3 were determined by single crystal X-ray diffraction, showing the expected chelation of the Ar-BIAN ligands and two chloride ligands completing the coordination sphere of the Cu(11) centre. In the case of the complex 1, an intermediate coordination geometry around the Cu(II) centre, between square planar and tetrahedral, was revealed, while the complex 2 showed an almost square planar geometry. The structural differences and evaluation of energetic changes were rationalised by DFT calculations. Analysis of the electrochemical behaviour of complexes 1-3 was performed by cyclic voltammetry and the experimental redox potentials for Cu(II)/Cu(I) pairs have been compared with theoretical values calculated by DFT in the gas phase and in dichloromethane and methanol solutions. The complex 1 exhibited good activity in the reverse atom transfer radical polymerisation (ATRP) of styrene.}

Li, Lidong, Patricia S. Lopes, Claudia A. Figueira, Clara S. B. Gomes, M. Teresa Duarte, Vitor Rosa, Christophe Fliedel, Teresa Aviles, and Pedro T. Gomes. "{Cationic and Neutral (Ar-BIAN) Copper( I) Complexes Containing Phosphane and Arsane Ancillary Ligands: Synthesis, Molecular Structure and Catalytic Behaviour in Cycloaddition Reactions of Azides and Alkynes}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY} (2013): {1404-1417}. Abstract

{{A series of new cationic and neutral (Ar-BIAN) copper(I) complexes {[}in which Ar-BIAN = bis(aryl)acenaphthenequinonediimine] was synthesised and characterised by elemental analysis, 1D and 2D NMR spectroscopy and single-crystal Xray diffraction. The cationic complexes of the general formula {[}Cu(Ar-BIAN)L-2]BF4 {[}L-2 = (PPh3)(2) (1), dppe (2), dppf (3), (AsPh3)(2) (4); Ar = 4-iPrC(6)H(4) (a), 4-MeOC6H4 (b), 4-NO2C6H4 (c), 2-iPrC(6)H(4) (d), Ph2PCH2CH2PPh2 (dppe), (Ph2PC5H4)(2)Fe (dppf)] were synthesised by reaction of {[}Cu(EPh3)(4)]BF4 (E = P or As) and equimolar amounts of Ar-BIAN ligands, or by reaction of equimolar amounts of {[}Cu(NCMe)(4)]BF4, 4-iPrC(6)H(4)-BIAN (a) and diphosphanes dppe or dppf, in dichloromethane, whereas the neutral complexes of the types {[}CuX(Ar-BIAN)(EPh3)] {[}X = Cl

Vitor Rosa, Teresa Aviles, Gabriel Aullon, Berta Covelo, and Carlos Lodeiro. "{A new bis(1-naphthylimino)acenaphthene compound and its Pd(II) and Zn(II) complexes: Synthesis, characterization, solid-state structures and density functional theory studies on the syn and anti isomers}." {INORGANIC CHEMISTRY}. {47} (2008): {7734-7744}. Abstract

{A new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, L1, and its Zn(II) and Pd(II) complexes {[}ZnCl(2)(L1)], 1, and {[}PdCl(2)(L1)], 2, were synthesized. L1 was prepared by the ``template method{''}, reacting 1-naphthyl amine and acenaphthenequinone in the presence of ZnCl(2), giving 1, which was further demetallated. Reaction of 1-naphthyl amine with acenaphthenequinone and PdCl(2) afforded dichloride bis(1-naphthyl)acenaphthenequinonediimine palladium, 2. L1, 1, and 2 were obtained as a mixture of syn and anti isomers. Compound 2 was also obtained by the reaction of PdCl(2) activated by refluxing it in acetonitrile followed by the addition of L1; by this route also a mixture of syn and anti isomers was obtained, but at a different rate. The solid-state structures of L1 and the anti isomer of compound 2 have been determined by single-crystal X-ray diffraction. All compounds have been characterized by elemental analyses; matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry; IR; UV-vis; (1)H, (13)C, and (1)H-(1)H correlation spectroscopy; (1)H-(13)C heteronuclear single quantum coherence; (1)H-(13)C heteronuclear single quantum coherence-total correlation spectroscopy; and (1)H-(1)H nuclear Overhauser effect spectrometry NMR spectroscopies when applied. Density functional theory studies showed that both conformers for {[}PdCl(2)(BIAN)] are isoenergetic, and they can both be obtained experimentally. However, we can predict that the isomerization process is not available in a square-planar complex, but it is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected.}