Publications

Export 3 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
V
Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

Vitor Rosa, Sara Realista, Ana Mourato, Luisa Maria Abrantes, Joao Henriques, Maria Jose Calhorda, Teresa Aviles, Michael G. B. Drew, and Vitor Felix. "{1,1 `-Bis(diphenylphosphino)ferrocene bridging two mono(cyclopentadienyl) cobalt moieties: Synthesis, structure, electrochemistry and DFT studies}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {712} (2012): {52-56}. Abstract

{Reaction of {[}Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex {[}Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf. (C) 2012 Elsevier B.V. All rights reserved.}

Vitor Rosa, Teresa Aviles, Gabriel Aullon, Berta Covelo, and Carlos Lodeiro. "{A new bis(1-naphthylimino)acenaphthene compound and its Pd(II) and Zn(II) complexes: Synthesis, characterization, solid-state structures and density functional theory studies on the syn and anti isomers}." {INORGANIC CHEMISTRY}. {47} (2008): {7734-7744}. Abstract

{A new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, L1, and its Zn(II) and Pd(II) complexes {[}ZnCl(2)(L1)], 1, and {[}PdCl(2)(L1)], 2, were synthesized. L1 was prepared by the ``template method{''}, reacting 1-naphthyl amine and acenaphthenequinone in the presence of ZnCl(2), giving 1, which was further demetallated. Reaction of 1-naphthyl amine with acenaphthenequinone and PdCl(2) afforded dichloride bis(1-naphthyl)acenaphthenequinonediimine palladium, 2. L1, 1, and 2 were obtained as a mixture of syn and anti isomers. Compound 2 was also obtained by the reaction of PdCl(2) activated by refluxing it in acetonitrile followed by the addition of L1; by this route also a mixture of syn and anti isomers was obtained, but at a different rate. The solid-state structures of L1 and the anti isomer of compound 2 have been determined by single-crystal X-ray diffraction. All compounds have been characterized by elemental analyses; matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry; IR; UV-vis; (1)H, (13)C, and (1)H-(1)H correlation spectroscopy; (1)H-(13)C heteronuclear single quantum coherence; (1)H-(13)C heteronuclear single quantum coherence-total correlation spectroscopy; and (1)H-(1)H nuclear Overhauser effect spectrometry NMR spectroscopies when applied. Density functional theory studies showed that both conformers for {[}PdCl(2)(BIAN)] are isoenergetic, and they can both be obtained experimentally. However, we can predict that the isomerization process is not available in a square-planar complex, but it is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected.}