Export 18 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Aviles, T., A. Dinis, M. G. B. Drew, and V. Felix. "A novel infinite 1-D chain of Silver(I) bridged by trans-azobenzene." Monatsh Chem. 131 (2000): 1305-1310. AbstractWebsite

The self-assembly of Ag[BF(4)] with trans-azobenzene in dichloromethane yields a new coordination polymer ([Ag(mu -trans-azobenzene)H(2)O] [BF(4)])(n) which was characterized by X-ray single crystal diffraction. The crystal consists of 1-D zigzag cationic chains made up from [Ag(H(2)O)](+) units linked by trans-azobenzene bridges and BF(4)(-) anions. Hydrogen bonding interactions between the chains and BF(4)(-) anions occur via intermolecular C-H . . .F and O-H . . .F contacts, and the crystal displays a 2-D supramolecular structure.

Pedras, B., H. M. Santos, L. Fernandes, B. Covelo, A. Tamayo, E. Bertolo, J. L. Capelo, T. Aviles, and C. Lodeiro. "Sensing metal ions with two new azomethine-thiophene pincer ligands (NSN): Fluorescence and MALDI-TOF-MS applications." Inorg Chem Commun. 10 (2007): 925-929. AbstractWebsite

The two new pincer azomethine-thiophene ligands (N,NE',N,NE')-N,N'-(thiophene-2,5-diylbis(methan-1-yl-1-ylidene))bis(naphathalen-2-ylmethanamine) (L1) and (E)-(4,6-dihydropyren-1-yl)-N-((5-((E)-(pyren-1-ylmethylimino)ethyl)thiophen-2-yl)methylene)methanamine (L2), their absorption, fluorescence and MALDI-TOF-MS spectroscopic studies are described. The two systems synthesised combine the emissive probes pyrene and naphthyl with the good chelating properties of a tridentate SN2 donor-set from a thiophene Schiff-base ligand. Both ligands gave analytically pure solid complexes with Ni(II) and Pd(II) salts. The bichromophoric pyrene derivative L2 presents two emission bands in solution, one corresponding to the monomer species and a red-shifted band attributable to the intramolecular excimer. Ni(II) and Pd(II) complexation affects the conformation in solution, increasing the monomer emission at the expense of the excimer band; this effect could be explored in metal ion sensing. System L1 behaves as a non emissive probe. In situ complexation reactions followed by MALDI-TOF-MS spectrometry without matrix support have also been performed; these experiments show that L1 could be a potential chemosensor for Ni(II) and Pd(11). (c) 2007 Elsevier B.V. All rights reserved.

Pinto, P., M. J. Calhorda, V. Felix, T. Aviles, and M. G. B. Drew. "Syntheses and crystal structures of polynuclear Cu(I) complexes containing the 1,1 '-bis(diphenylphosphino)-ferrocene ligand." Monatsh Chem. 131 (2000): 1253-1265. AbstractWebsite

The reaction between [Cu(NCMe)(4)][PF6] and 1,1'-bis-(diphenylphosphino)-ferrocene (dppf) in several ratios, solvents, and conditions led to the synthesis and structural characterization of the Cu(I) complexes [Cu(dppf)(Odppf)] [PF6] (1), [(dppf)Cu(mu -dppf)Cu(dppf)][PF6](2) (2), and [(dppf)Cu(mu -Cl)(2)Cu(dppf)] (3). Although 1 and the cation in 2 were known, the first was structurally characterized for the first time, exhibiting a significant asymmetry in the coordination sphere of Cu(I)) owing to the presence of oxygen. In 2, the PF6- anion led to an interesting crystal packing with large open channels containing water. Finally, DFT calculations on a model of 3 showed that its HOMO exhibits, besides Fe, a significant Cu and Cl character, which is reflected in its electrochemical properties.

Aviles, T., A. Dinis, M. J. Calhorda, P. Pinto, V. Felix, and M. G. B. Drew. "Synthesis, X-ray structure, and theoretical studies of novel cationic mono-cylopentadienyl complexes of Co(III): the orthometalation of trans-azobenzene." J Organomet Chem. 625 (2001): 186-194. AbstractWebsite

New cationic mono-cyclopentadienyl complexes of Co(III) containing mono or bidentate nitrogen donor ligands of general formula [Co(eta (5)-C5H5)(PPh3)L-2][BF4](2) (L = NC-CH3, 2, and NC = Ph, 3) or [Co(eta (5)-C5H5)(PPh3)(L-L)[BF4](2), [L-L = 2,2 ' -bisimidazole (H(2)biim) (4) and dipyridylamine [HN(NC5H5)(2)] (5) have been synthesised by the stoichiometric reaction of the Co(III) complex Co(eta (5)-C5H5)(PPh3)I-2 (1), with Ag[BF4] and the appropriate ligand in CH2Cl2. Under the same conditions and using;trans-azobenzene as a ligand, an orthometalation reaction took placet giving the new compound [Co(eta (5)-C5H5)(PPh3)(kappa -C,kappa -N-C6H4N=NPh)][BF4] (6) in high yield. The structural characterisation of compounds 4 and 6, and of the starting compound Co(eta (5)-C5H5)(PPh3)I-2 (1) was done by single-crystal X-ray diffraction studies. DFT calculations (ADF program) were performed in order to understand the orthometallation reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Aviles, T., A. Dinis, J. O. Goncalves, V. Felix, M. J. Calhorda, A. Prazeres, M. G. B. Drew, H. Alves, R. T. Henriques, V. da Gama, P. Zanello, and M. Fontani. "Synthesis, X-ray structures, electrochemistry, magnetic properties, and theoretical studies of the novel monomeric [CoI2(dppfO(2))] and polymeric chain [CoI2(mu-dppfO(2))(n)]." J Chem Soc Dalton (2002): 4595-4602. AbstractWebsite

The new compound [Co(eta(5)-C5H5)(dppf-P,P')I]I, 1, was synthesised by the stoichiometric reaction of the Co(III) complex [Co(eta(5)-C5H5)(CO)I-2], 2, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) in CH2Cl2, and was characterised by multinuclear NMR spectroscopy. Exposure to air of THF or CH2Cl2 solutions of compound 1 gave, in an unexpected way, a polymeric chain comprising bridging 1,1'-bis(oxodiphenylphosphoranyl) ferrocene (dppfO(2)) joining tetrahedral Co(II) units [CoI2(mu-dppfO(2))](n), 3. Attempts to obtain the polymeric chain 3 by the direct reaction of dppfO(2) with CoI2, in CH2Cl2, gave instead the monomeric compound [CoI2(dppfO(2))], 4, in which dppfO2 is coordinated in a chelating mode. The structural characterisation of compounds 2, 3, and 4 was carried out by single crystal X-ray diffraction studies. The magnetic behaviour of [CoI2(dppfO(2))] and [CoI2(mu-dppfO(2))](n) was studied, and the results are consistent with tetrahedral S = 3/2 Co-II, possessing a (4)A(2) ground state, and S = 0 Fe-II. In these compounds, Co-II negative zero field splittings were determined from an analysis of the magnetic susceptibility temperature dependence, with D/k = -13 and -14 K for CoI2(dppfO(2)) and [CoI2(mu-dppfO(2))](n), respectively. DFT calculations were performed in order to understand the electronic structure of [Co(eta(5)-C5H5)(dppf-P,P')I]I, 1, as well as that of the paramagnetic specie [CoI2(dppfO(2))], 4. The [CoI2(mu-dppfO(2))](n) chain was also analysed and found to behave very similarly to the monomeric iodine derivative 4. The calculations showed the unpaired electrons to be localized on the Co(II) centre in all these species. The rather complicated electrochemical behaviour exhibited by the dppf complex [Co-III(eta(5)-C5H5)(dppf-P,P')I]I and by [Co(dppfO(2))I-2] is discussed.

Vitor Rosa, Sara Realista, Ana Mourato, Luisa Maria Abrantes, Joao Henriques, Maria Jose Calhorda, Teresa Aviles, Michael G. B. Drew, and Vitor Felix. "{1,1 `-Bis(diphenylphosphino)ferrocene bridging two mono(cyclopentadienyl) cobalt moieties: Synthesis, structure, electrochemistry and DFT studies}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {712} (2012): {52-56}. Abstract

{Reaction of {[}Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex {[}Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf. (C) 2012 Elsevier B.V. All rights reserved.}

Li, Lidong, Patricia S. Lopes, Claudia A. Figueira, Clara S. B. Gomes, M. Teresa Duarte, Vitor Rosa, Christophe Fliedel, Teresa Aviles, and Pedro T. Gomes. "{Cationic and Neutral (Ar-BIAN) Copper( I) Complexes Containing Phosphane and Arsane Ancillary Ligands: Synthesis, Molecular Structure and Catalytic Behaviour in Cycloaddition Reactions of Azides and Alkynes}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY} (2013): {1404-1417}. Abstract

{{A series of new cationic and neutral (Ar-BIAN) copper(I) complexes {[}in which Ar-BIAN = bis(aryl)acenaphthenequinonediimine] was synthesised and characterised by elemental analysis, 1D and 2D NMR spectroscopy and single-crystal Xray diffraction. The cationic complexes of the general formula {[}Cu(Ar-BIAN)L-2]BF4 {[}L-2 = (PPh3)(2) (1), dppe (2), dppf (3), (AsPh3)(2) (4); Ar = 4-iPrC(6)H(4) (a), 4-MeOC6H4 (b), 4-NO2C6H4 (c), 2-iPrC(6)H(4) (d), Ph2PCH2CH2PPh2 (dppe), (Ph2PC5H4)(2)Fe (dppf)] were synthesised by reaction of {[}Cu(EPh3)(4)]BF4 (E = P or As) and equimolar amounts of Ar-BIAN ligands, or by reaction of equimolar amounts of {[}Cu(NCMe)(4)]BF4, 4-iPrC(6)H(4)-BIAN (a) and diphosphanes dppe or dppf, in dichloromethane, whereas the neutral complexes of the types {[}CuX(Ar-BIAN)(EPh3)] {[}X = Cl

Fliedel, Christophe, Samir Mameri, Samuel Dagorne, and Teresa Aviles. "{Controlled ring-opening polymerization of trimethylene carbonate and access to PTMC-PLA block copolymers mediated by well-defined N-heterocyclic carbene zinc alkoxides}." {APPLIED ORGANOMETALLIC CHEMISTRY}. {28} (2014): {504-511}. Abstract

{Four novel Zinc-NHC alkyl/alkoxide/chloride complexes (4, 5, 9 and 9) were readily prepared and fully characterized, including X-ray diffraction crystallography for 5 and 9. The reaction of N-methyl-N-butyl imidazolium chloride (3.HCl) with ZnEt2 (2 equiv.) afforded the corresponding {[}(CNHC)ZnCl(Et)] complex (4) via a protonolysis reaction, as deduced from NMR data. The alcoholysis of 4 with BnOH led to quantitative formation of the dinuclear Zn(II) alkoxide species {[}(CNHC)ZnCl(OBn)]2 (5), as confirmed by X-ray diffraction analysis. The NMR data are in agreement with species 5 retaining its dimeric structure in solution at room temperature. The protonolysis reaction of N-(2,6-diisopropylphenyl)-N-ethyl methyl ether imidazolium chloride (8.HCl) with ZnEt2 (2 equiv.) yielded the {[}(CNHC)ZnCl(Et)] species 9. The latter was found to be reactive with CH2Cl2 in solution and to cleanly convert to the corresponding Zn(II) dichloride {[}(CNHC)ZnCl2]2 (9), whose molecular structure was also elucidated using X-ray diffractometry. Unlike Zn(II)-NHC alkoxide species 1 and 2, which contain a NHC flanked with an additional N-functional group (i.e. thioether and ether, respectively), the Zn(II) alkoxide species 5 incorporates a monodentate NHC ligand. The Zn(II) complexes 1, 2 and 5 were tested in the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). All three species are effective initiators for the controlled ROP of trimethylene carbonate, resulting in the production of narrow disperse PTMC material. Initiator 1 (incorporating a thioether moiety) was found to perform best in the ROP of TMC. Notably, the latter also readily undergoes the sequential ROP of TMC and rac-LA in the presence of a chain-transfer agent, leading to well-defined and high-molecular-weight PTMC/PLA block copolymers. Copyright (c) 2014 John Wiley & Sons, Ltd.}

Fliedel, Christophe, Vitor Rosa, Carla I. M. Santos, Pablo J. Gonzalez, Rui M. Almeida, Clara S. B. Gomes, Pedro T. Gomes, Amelia M. N. D. A. Lemos, Gabriel Aullon, Richard Welter, and Teresa Aviles. "{Copper(II) complexes of bis(aryl-imino)acenaphthene ligands: synthesis, structure, DFT studies and evaluation in reverse ATRP of styrene}." {DALTON TRANSACTIONS}. {43} (2014): {13041-13054}. Abstract

{Two new Ar-BIAN Cu(II) complexes (where Ar-BIAN = bis(aryl-imino)acenaphthene) of formulations {[}CuCl2(Mes-BIAN)] (1) (Mes = 2,4,6-Me3C6H2) and {[}CuCl2(Dipp-BIAN)] (2) (Dipp = 2,6-iPr(2)C(6)H(3)) were synthesised by direct reaction of CuCl2 suspended in dichloromethane with the respective ligands Mes-BIAN (L1) and Dipp-BIAN (L2), dissolved in dichloromethane, under an argon atmosphere. Attempts to obtain these compounds by solubilising CuCl2 in methanol and adding a dichloromethane solution of the corresponding ligand, under aerobic conditions, gave also compound 1, but, in the case of L2, the Cu(I) dimer {[}CuCl(Dipp-BIAN)](2) (3) was obtained instead of compound 2. The compounds were fully characterised by elemental analyses, MALDI-TOF mass spectrometry, FT-IR, H-1 NMR and EPR spectroscopic techniques. The solid-state molecular structures of compounds 1-3 were determined by single crystal X-ray diffraction, showing the expected chelation of the Ar-BIAN ligands and two chloride ligands completing the coordination sphere of the Cu(11) centre. In the case of the complex 1, an intermediate coordination geometry around the Cu(II) centre, between square planar and tetrahedral, was revealed, while the complex 2 showed an almost square planar geometry. The structural differences and evaluation of energetic changes were rationalised by DFT calculations. Analysis of the electrochemical behaviour of complexes 1-3 was performed by cyclic voltammetry and the experimental redox potentials for Cu(II)/Cu(I) pairs have been compared with theoretical values calculated by DFT in the gas phase and in dichloromethane and methanol solutions. The complex 1 exhibited good activity in the reverse atom transfer radical polymerisation (ATRP) of styrene.}