Let \(\mathcal{M}_{X,w}(\mathbb{R})\) denote the algebra of the Fourier multipliers on a separable weighted Banach function space \(X(\mathbb{R},w)\). We prove that if the Cauchy singular integral operator \(S\) is bounded on \(X(\mathbb{R},w)\), then \(\mathcal{M}_{X,w}(\mathbb{R})\) is continuously embedded into \(L^\infty(\mathbb{R})\). An important consequence of the continuous embedding \(\mathcal{M}_{X,w}(\mathbb{R})\subset L^\infty(\mathbb{R})\) is that \(\mathcal{M}_{X,w}(\mathbb{R})\) is a Banach algebra.