Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
In Press
Karlovych, Oleksiy, and Sandra Mary Thampi. "On multiplier analogues of the algebra C+H^\infty on weighted rearrangement-invariant sequence spaces." Journal of Approximation Theory (In Press).
2024
Karlovych, Oleksiy, and Sandra Mary Theampi. "The Brown-Halmos theorem for discrete Wiener-Hopf operators." Advances in Operator Theory. 9 (2024): 69.Website
Karlovych, Oleksiy, and Alina Shalukhina. "Maximal noncompactness of singular integral operators on Lp spaces with power weights." Tbilisi Analysis and PDE Seminar. Extended Abstracts of the 2020-2023 Seminar Talks. Eds. Rolnad Duduchava, Eugene Shargorodsky, and George Tephnadze. Cham: Birkhäuser, 2024. 87-97.
Karlovych, Oleksiy, and Eugene Shargorodsky. "A remark on piecewise linear interpolation of continuous Fourier multipliers." Tbilisi Analysis and PDE Seminar. Extended Abstracts of the 2020-2023 Seminar Talks. Eds. Rolnad Duduchava, Eugene Shargorodsky, and George Tephnadze. Cham: Birkhäuser, 2024. 99-107.
2022
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Fourier convolution operators with symbols equivalent to zero at infinity on Banach function spaces." Current Trends in Analysis, its Applications and Computation. Eds. P. Cerejeiras, M. Reissig, I. Sabadini, and J. Toft. Springer, 2022. 335-343.
2014
Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "The Cauchy singular integral operator on weighted variable Lebesgue spaces." Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, 236. Eds. Manuel Cepedello Boiso, Håkan Hedenmalm, Marinus A. Kaashoek, Alfonso Montes Rodríguez, and Sergei Treil. Basel: Birkhäuser, 2014. 275-291. Abstract

Let \(p:\mathbb{R}\to(1,\infty)\) be a globally log-Hölder continuous variable exponent and \(w:\mathbb{R}\to[0,\infty]\) be a weight. We prove that the Cauchy singular integral operator \(S\) is bounded on the weighted variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R},w)=\{f:fw\in L^{p(\cdot)}(\mathbb{R})\}\) if and only if the weight \(w\) satisfies $$ \sup_{-\infty < a < b < \infty} \frac{1}{b-a} \|w\chi_{(a,b)}\|_{p(\cdot)} \|w^{-1}\chi_{(a,b)}\|_{p'(\cdot)}<\infty \quad (1/p(x)+1/p'(x)=1). $$

2004
Karlovich, Alexei Yu. "Some algebras of functions with Fourier coefficients in weighted Orlicz sequence spaces." Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister Memorial Volume. Operator Theory: Advances and Applications, 147. Eds. Israel Gohberg, Wolfgang Wendland, António Ferreira dos Santos, Frank-Ollme Speck, and Francisco Sepúlveda Teixeira. Basel: Birkhäuser, 2004. 287-296. Abstract

In this paper, the author proves that the set of all integrable functions whose sequences of negative (resp. nonnegative) Fourier coefficients belong to \(\ell^1\cap\ell^\Phi_{\varphi,w}\) (resp. to \(\ell^1\cap\ell^\Psi_{\psi,\varrho}\)), where \(\ell^\Phi_{\varphi,w}\) and \(\ell^\Psi_{\psi,\varrho}\) are two-weighted Orlicz sequence spaces, forms an algebra under pointwise multiplication whenever the weight sequences
\[
\varphi=\{\varphi_n\},\quad
\psi=\{\psi_n\},\quad
w=\{w_n\},\quad
\varrho=\{\varrho_n\}
\]
increase and satisfy the \(\Delta_2\)-condition.