Publications

Export 33 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Gaspar, D., AC Pimentel, MJ Mendes, T. Mateus, BP Falcão, JP Leitão, J. Soares, A. Araújo, A. Vicente, SA Filonovich, H. Águas, R. Martins, and I. Ferreira. "{Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films}." Plasmonics. 9 (2014): 1015-1023. AbstractWebsite
n/a
Morawiec, Seweryn, Manuel J. Mendes, Sergej A. Filonovich, Tiago Mateus, Salvatore Mirabella, Hugo Águas, Isabel Ferreira, Francesca Simone, Elvira Fortunato, Rodrigo Martins, Francesco Priolo, and Isodiana Crupi. "{Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors}." Optics Express. 22 (2014): A1059-A1070. AbstractWebsite

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells{&}{\#}x2019; rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 {&}{\#}x2013; 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

Mendes, MJ, S. Morawiec, F. Simone, F. Priolo, and I. Crupi. "{Colloidal plasmonic back reflectors for light trapping in solar cells}." Nanoscale. 6 (2014). Abstract

A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75{%}) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature ({\textless}120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration. © 2014 the Partner Organisations.

Mendes, MJ, S. Morawiec, I. Crupi, F. Simone, and F. Priolo. "{Colloidal self-assembled nanosphere arrays for plasmon-enhanced light trapping in thin film silicon solar cells}." Energy Procedia. 2014. Abstract
n/a
Morawiec, S., MJ Mendes, SA Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi. "{Photocurrent enhancement in thin a-Si: H solar cells via plasmonic light trapping}." Optics InfoBase Conference Papers. 2014. Abstract
n/a
2013
Morawiec, Seweryn, Manuel J. Mendes, Salvatore Mirabella, Francesca Simone, Francesco Priolo, and Isodiana Crupi. "{Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties}." Nanotechnology. 24 (2013): 265601. AbstractWebsite

The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPRs in the nanostructures is discussed towards application as plasmon-enhanced back reflectors in thin-film solar cells.

2009
Martí, A., E. Antolín, P. G. Linares, E. Cánovas, D. {Fuertes Marrón}, C. Tablero, M. Mendes, A. Mellor, I. Tobías, M. Y. Levy, E. Hernández, A. Luque, C. D. Farmer, C. R. Stanley, R. P. Campion, J. L. Hall, S. V. Novikov, C. T. Foxon, R. Scheer, B. Marsen, H. W. Schock, M. Picault, and C. Chaix. "{IBPOWER: Intermediate band materials and solar cells for photovoltaics with high efficiency and reduced cost}." Conference Record of the IEEE Photovoltaic Specialists Conference. 2009. Abstract
n/a
2008
Mendes, Manuel J., Howard K. Schmidt, and Matteo Pasquali. "{Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis}." Journal of Physical Chemistry B (2008). AbstractWebsite
n/a