Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite, , pp. 55-56, Jan, 2011. Abstract
n/a
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 14th International Symposium on Electrets, 2011. Abstract
n/a
Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 2011 14th International Symposium on Electrets (Ise), pp. 55-56, 2011. Abstract
n/a
Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite, , pp. 55-56, 2011. AbstractWebsite
n/a
2007
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, pp. 4501-4505, Jan, 2007. AbstractWebsite
n/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).

Lanca, M. C., W. Wirges, E. R. Neagu, R. Gerhard, and J. Marat-Mendes, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4501-4505, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)). (c) 2007 Elsevier B.V. All rights reserved.

2005
Neagu, E. R.;Neagu, R. M.;Lanca, M. C.;Vassilikou-Dova, A.;Marat-Mendes, and J. N., Identification of an apparent peak by use of the final thermally stimulated discharge current technique, , pp. 296-299, Jan, 2005. Abstract
n/a
Neagu, E. R., R. M. Neagu, M. C. Lanca, A. Vassilikou-Dova, and J. N. Marat-Mendes, Identification of an apparent peak by use of the final thermally stimulated discharge current technique, , pp. 296-299, 2005. AbstractWebsite

The final thermally stimulated discharge current (FTSDC) technique can be used to analyze charge trapping and transport in insulating materials. The experimental conditions can be selected so that the FTSDC is mainly determined by the space charge detrapping. Measurements of the FTSDC in a wide temperature range including the local (secondary) beta relaxation and the non-local (primary) cc relaxation, for different polymers, demonstrate the existence of an apparent peak. The shift of peak temperature T-m with respect to the charging temperature T-p is analyzed. The interval T-m - T-p decreases from about 25 K to zero, as T-p approaches the glass transition T-g. T-m - T-p is lower for materials of lower conductivity. The peak width at the half maximum intensity decreases as Tp increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and detrapping processes are affected by the strong thermal motion.

2002
J, M., L. MC, and M. - M. S. J, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, Jan, 2002. Abstract
n/a
Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).

Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).