Carmo Lança
Assistant Professor / Researcher /-/ Materials Science Dept. /-/ Professora Auxiliar / Investigadora /-/ Dept Ciências Materiais /-/ I3N/Cenimat
The final thermally stimulated discharge current (FTSDC) technique can be used to analyze charge trapping and transport in insulating materials. The experimental conditions can be selected so that the FTSDC is mainly determined by the space charge detrapping. Measurements of the FTSDC in a wide temperature range including the local (secondary) beta relaxation and the non-local (primary) cc relaxation, for different polymers, demonstrate the existence of an apparent peak. The shift of peak temperature T-m with respect to the charging temperature T-p is analyzed. The interval T-m - T-p decreases from about 25 K to zero, as T-p approaches the glass transition T-g. T-m - T-p is lower for materials of lower conductivity. The peak width at the half maximum intensity decreases as Tp increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and detrapping processes are affected by the strong thermal motion.
ISE 12 12th International Symposium on Electrets (ISE 12) SEP 11-14, 2005 Salvador, BRAZIL